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a b s t r a c t 

Image segmentation and superpixel generation have been studied for many years, and they are still active 

research topics in computer vision. Although many advanced computer vision algorithms have been used 

for image segmentation and superpixel generation, there is no end-to-end trainable algorithm that gen- 

erates superpixels and segment images simultaneously. We propose an end-to-end trainable network to 

solve this problem. We train a differentiable clustering algorithm module to produce accurate superpixels. 

Based on the generated superpixels, the superpixel pooling operation is performed to obtain superpixel 

features, and then we calculate the similarity of two adjacent superpixels. If the similarity is greater than 

the preset threshold, we merge the two superpixels. Finally, we get the segmented image. We conduct 

our experiments in the BSDS500 dataset and get good results. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

As a key component of many different computer vision tasks,

mage segmentation intends to divide an image into large percep-

ual regions, where the pixels within each region typically belong

o the same visual object with minor feature differences. It has

een widely used in object proposal generation [2,3] , object de-

ection/recognition [4,5] and other fields. 

Different from large perceptual regions resulting from im-

ge segmentation, superpixel segmentation performs an over-

egmentation on input image. It segments an image into small,

egular, and compact regions, which are often composed of pix-

ls having similar spatial position, texture, color, brightness, etc .

eanwhile, it preserves the salient features of a pixel-based rep-

esentation. Compared to image segmentation, superpixel usually

as strong boundary coherence and the produced segments can be

asy to control. Due to the efficiency in both representation and

omputation, superpixels have been widely used in computer vi-

ion algorithms, such as object detection [6,7] , semantic segmen-

ation [8–11] , tracking [12–14] , and saliency estimates [15–17] . 

In recent years, people attempt to use superpixels as a reason-

ble start for image segmentation, e.g. [18] , to reduce the compu-

ational complexity. However, the interreaction of these two kinds

f segmentation is seldom considered. On one hand, superpixel in-
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eed can be viewed as a good start for segmentation due to its

ood adherence to strong boundaries; On the other hand, results of

mage segmentation can also provide clues for superpixel genera-

ion. Consider performing superpixel segmentation on images with

imilar foreground and background color for example, it is difficult

or algorithm to determine the boundary with only local, low-level

ixel features. By integrating object-level features into superpixel

egmentation, it is supposed to achieve better result. 

In this paper, we try to explore the mutual promotion be-

ween image segmentation and superpixel segmentation. Specifi-

ally, we propose an end-to-end trainable network which can gen-

rate superpixels and perform image segmentation simultaneously.

y combining these two tasks under the same neural network

ramework, we try to demonstrate they promote each other. The

rchitecture of our network is shown in Fig. 1 . We use a fully con-

olutional network and the iterative differentiable clustering algo-

ithm [19] to obtain superpixels. Next, we adopt the superpixel

ooling layer [20] to get the superpixel features, with which the

imilarity between adjacent superpixels can be calculated. If the

imilarity is greater than the preset threshold, we merge them ac-

ording to a simple procedure to get object segments. Note that

ince superpixel does not contain any semantic information while

bject segmentation does, we get them using different features

shown in Fig. 1 using light blue- and light pink-rectangle). We

rain the network using BSDS500 segmentation benchmark dataset

21] and compare our result with state-of-the-art ones. Experiment

https://doi.org/10.1016/j.patrec.2020.09.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2020.09.016&domain=pdf
mailto:liangli@tju.edu.cn
https://doi.org/10.1016/j.patrec.2020.09.016
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results show our network can produce boundary-adherent super-

pixels and semantic meaningful objects. 

The proposed network has the following characteristics: 

• Our network is end-to-end trainable and can be easily assem-

bled into other deep network structures for subsequent appli-

cations. 
• Our network can generate superpixels and get segmentation re-

sults, which is more efficient. The proposed algorithm has ex-

cellent performance and has higher precision than existing al-

gorithms. 

2. Related work 

Since Ren and Malik proposed the concept of superpixel in

2003 [22] , researchers have contributed to the field. The simple

linear iterative clustering (SLIC) algorithm [23] converts the color

image into the CIELAB color spaces and the 5-dimensional fea-

ture vectors in XY coordinates, and then constructs a distance met-

ric for the 5-dimensional feature vector to locally cluster the pix-

els. The idea is simple and easy to implement. Compared with

other superpixel segmentation methods, the SLIC is ideal for speed,

compactness and contour retention. However, due to the non-

differentiable nature of SLIC, it is difficult to combine it with the

deep network. In order to solve this problem, Varun Jampani et al.

proposed Superpixel Sampling Network (SSN) [19] , which converts

the SLIC into a differentiable algorithm by relaxing the nearest

neighbor constraint existing in the SLIC, so that the deep network

can be used to learn superpixels. 

There are many mature image segmentation algorithms. Due

to space constraints, we only review some classical algorithms.

The graph-based approach represents image segmentation as a

graph partitioning problem, such as EGB [24] . Although the EGB

algorithm is simple and efficient, the optimal value of the pa-

rameters is difficult to determine, over-segmentation and under-

segmentation may occur. Fuzzy C-means (FCM) clustering algo-

rithm is a kind of fuzzy clustering algorithm. The unsupervised

fuzzy clustering can reduce human intervention and complete seg-

mentation automatically. However, there are many defects, such as

the initial value is difficult to determine, sensitive to noise, and so

on. 

Segmentation by learning the similarity of pixels or superpix-

els is also a trend. In [25] , the authors proposed AffinityNet that

predicts semantic affinity between a pair of adjacent image co-

ordinates. The semantic propagation is then realized by random

walk with the affinities predicted by AffinityNet. Based on the dis-

tance metric between the superpixel descriptor vectors to calculate
t iterations
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Fig. 1. Pipeline of the proposed algorithm. For a given image, our algorithm generates s

to a feature-extraction network, which consists of a series of convolutional layers, group

are then feeded to the differentiable clustering module to generate superpixels. Superpix

superpixels, we define the loss function based on the object groundtruth. The final image
he superpixel similarity, [26] introduced a new superpixel context

escriptor to strengthen the learned characteristics towards better

imilarity prediction. Image segmentation is then achieved by iter-

tively merging the most similar superpixel pairs selected using a

imilarity weighting objective function. 

Superpixel pooling proposed in Superpixel Pooling Network

SPN) [20] provides new ideas for extracting features of superpix-

ls. SPN utilizes superpixel segmentation of input image as a pool-

ng layout to reflect low-level image structure for learning and in-

erring semantic segmentation. The initial annotations generated

y SPN are then used to learn another neural network that esti-

ates pixelwise semantic labels. The DEL algorithm [18] also used

uperpixel pooling operation to extract superpixel features to per-

orm image segmentation and achieved good results. Based on the

xtracted superpixels, our algorithm also uses the superpixel pool-

ng operation to extract the features of the superpixels to calculate

he superpixel similarity. 

. Our approach 

As shown in Fig. 1 , our approach learns image features from

he CNN deep network [27] firstly, then we use an iterative differ-

ntiable clustering algorithm module to get superpixels. Next, we

alculate the superpixel feature vectors by superpixel pooling layer

nd we learn the similarity between the adjacent superpixels. Fi-

ally, we judge whether the adjacent two superpixels are merged

ccording to the similarity. In this section, we will introduce our

pproach in detail. 

.1. Online superpixel generation 

Superpixel groups similar pixels into an isotropic region, which

akes it possible to improve the segmentation quality and effi-

iency. For example, in [18] , the authors use SLIC [23] as a start of

mage segmentation in consideration of efficiency. Here, different

rom [18] which emploies an existing superpixel algorithm to do

mage segmentation, we incorporate superpixel generation as part

f our image segmentation network. To do this, we adopt differen-

iable clustering algorithm module, proposed in [19] , to replace the

ard pixel-superpixel associations in the SLIC algorithm [23] . 

Formally, for an image I ∈ R 

n ×5 of n pixels with 5-dimensional

 p = [ x, y, l, a, b] features in CIELAB space, we expect to divide it

nto m small regions considered as m superpixels. Here, we briefly

eview how to compute the hard pixel-superpixel association map

 = { 1 , 2 , . . . , m } n ×1 in the SLIC algorithm before describing the

oft-associations. Given a uniformly sampled superpixel centers C 0 
Superpixel
Pooling

Superpixel Feature Vectors

...
ll

Compute
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Contors

Compute
Superpixel

Contors
Model

pixel

. ... ... ... ..

SegmentationSegmentation

Merge

{ }...... .. .

O
bjec t   guided   loss

Output

uperpixel and image segmentation simultaneously. The input image is first feeded 

 normalization (GN) [1] and ReLU nonlinearities. The extracted pixel-level feature 

el pooling is used to obtain the superpixel feature vectors. To guide the quality of 

 segmentation is achieved by merging superpixels with high similarities. 
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s initial, the SLIC algorithm computes the new superpixel assign-

ent at each pixel p in each iteration t , 

 

t 
p = argmin 

i ∈{ 1 , 2 , ... ,m } 

∥∥I p − C t−1 
i 

∥∥
2 
, (1) 

here ‖ · ‖ 2 denotes the � 2 norm of input vector and C t−1 
i 

is the

eatures of superpixel center i which computed by averaging the

eatures of all its belonging pixels in iteration t . 

Because of the non-differentiable nearest neighbor assignment

volved in (1) , SLIC cannot be directly integrated in neural net-

ork. The differentiable clustering algorithm module substitute the

ard pixel-superpixel assosiation map H with a soft assosiation

 ∈ R 

n ×m , which is differentiable with respect to input features.

imilar with original SLIC, it has the following two core steps in

ach iteration: 

1. Pixel-superpixel association calculation . The association be-

ween pixel p and its neighboring superpixel i in iteration t is cal-

ulated as follows, 

 

t 
pi = e −‖ 

F p −C t−1 
i ‖ 

2 

2 , (2) 

here F p is the deep features of pixel p . In our case, it arises from

he feature extraction module of our network. Q 

t 
pi 

is the ( p, i )th en-

ry of Q in iteration t and accounts for the distance between pixel

 and superpixel center i . 

2. Superpixel center updating . The new superpixel clustering

enter is calculated from a weighted sum of pixel features, 

 

t 
i = 

1 

Z t 
i 

∑ 

p 

Q 

t 
pi F p , (3)

here Z t 
i 

denotes a normalization term written as Z t 
i 

= 

∑ 

p Q 

t 
pi 

. 

After iterating these two steps a few times (10 iterations in the

xperiment), we finally get the soft pixel-superpixel associations

 ∈ R 

n ×m . Similar to (1) , we calculate the hard association map

 

′ ∈ R 

n ×1 to get the explicit superpixel label for pixel p , 

 

′ 
p = argmax 

i ∈ { 1 , ... ,m } 
Q pi . (4) 

Note that, the calculation of such hard-associations is not dif-

erentiable. In our algorithm, this step does not participate in

ack propagation. In the experiment, we find that calculating soft-

ssociations between all pixels and superpixel cluster centers is

ime-consuming. Similar to SLIC [23] , we calculate the distance be-

ween each pixel and the surrounding superpixel clustering center,

hich greatly reduces the calculation time. 

.2. Superpixel similarity 

After obtaining the superpixels, we need to measure similarities

etween them. The feature of superpixels can be calculated using

uperpixel pooling [20] , which is actually an averaging of the be-

onging pixel features. In our algorithm, while performing super-

ixel pooling, we use different pixel features from the one used in

uperpixel generation, as shown in Fig. 1 using light blue-rectangle.

he consideration behind is that superpixel contains no semantic

nformation while object segmentation does, so the suitable fea-

ures for these two tasks would be different. We verify this idea in

ur experiment by comparing the superpixel and object segmenta-

ion results of the proposed algorithm and a variant of that (ours-

onv7) quantitatively. Refer to Section 4.1 for more detail. 

Formally, by denoting superpixel collection we obtained using

 = { S 1 , S 2 , . . . , S m 

} , we perform superpixel pooling to obtain the

uperpixel feature vectors { v 1 , v 2 , . . . , v m 

} , 

 i = 

1 

| S i | 
∑ 

p∈ S i 
F ′ p , (5) 
here F ′ p denotes the feature vector of pixel p used in superpixel

ooling and | · | is the cadinality of set (# of pixels in our case). 

The similarity between two adjacent superpixel i and j can be

alculated by: 

 i j = 

2 

1 + exp 

(∥∥v i − v j 
∥∥

1 

) , (6) 

here ‖ · ‖ 1 is the � 1 norm of input vectors. The range of s ij is

0,1]. The larger the value of s ij , the higher the similarity of super-

ixel i and j . When v i and v j are very similar, s ij is close to 1; on

he contrary, when v i and v j are extremely different, it is close to

. We decide whether to merge the superpixel i and j based on the

imilarity s ij . 

.3. Loss function 

We assume that the similarity between superpixel pairs in the

ame segmentation region is greater than the similarity of super-

ixel pairs in different segmentation regions. Based on the simi-

arity metric defined in (6) , we consider the loss function as fol-

ows: 

 = −
∑ 

S i ∈ S 

∑ 

S j ∈R i 

[
( 1 − α) · l i j · log 

(
s i j 

)
+ α ·

(
1 − l i j 

)
· log 

(
1 − s i j 

)]
, 

(7) 

here R i is a set of adjacent superpixels of superpixel S i , l ij ∈ {0,

} indicates whether S i and S j belongs to the same segmentation

egion. In practice, l ij is calculated from the obtained superpixel set

and the groundtruth segmentation masks provided by dataset. In

he case S i and S j belongs to the same segmentation region, l i j = 1 ;

therwise, l i j = 0 . 

Note that, for different input image, the matrix with ( i, j )th en-

ry being defined as l ij is different. So the size of mini-batch dur-

ng training phase must be set to 1, i.e. only one image is fed into

he network at a time. The parameter α represents the proportion

f superpixel pairs belonging to the same region in groundtruth.

t is used to balance the positive and negative samples. By denot-

ng | Y + | as the number of superpixel pairs belonging to the same

egion and | Y | as the whole number of superpixel pairs, α is calcu-

ated by α = | Y + | / | Y | . Through back propagation, image segmenta-

ion also guides superpixel segmentation. 

.4. Superpixel merging 

The final image segmentation is obtained by merging similar

uperpixels. We use the similarity between adjacent superpixels

nd a preset threshold T to determine whether two adjacent su-

erpixels are merged. Algorithm 1 outlines the calculation steps in

lgorithm 1 Superpixel merging algorithm. 

nput : s : similarity; 

T : similarity threshold; 

S = { S 1 , S 2 , . . . , S m 

} : superpixels. 

utput : Segmentation S . 

1: for each S i ∈ S do 

2: Construct adjacent superpixel set R i ⊂ S of S i ; 

3: for each S j ∈ R i do 

4: if s i j > T then 

5: S i ← S i ∪ S j , S ← S \ S j ; 

6: Update R i ; 

7: end if 

8: end for 

9: end for 

uperpixel merging. 
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3.5. Network architecture 

Fig. 1 shows our network structure. The CNN network used for

feature extraction consists of the convolution layer, group normal-

ization (GN) [1] and ReLU activation. We set the number of groups

in GN to 8. After the convolution of layer 2 and layer 4, we use the

max-pooling to increase the receptive field. The output of layer 4

and 6 is sampled up, and then concatenated with the output of

layer 2 to enrich the extracted features. We use the 3 × 3 con-

volution filter to set the output channel to 64 per layer. 

Note that, we replace the widely used batch normalization (BN)

layer with GN in consideration of that the size of each mini-batch

must be 1 in our network. Batch normalization (BN) is a milestone

technique in the development of deep learning, enabling various

networks to train. However, normalizing along the batch dimen-

sion introduces problems – BN’s error increases rapidly when the

batch size becomes smaller, caused by inaccurate batch statistics

estimation. In contrast, GN divides the channels into groups and

computes within each group the mean and variance for normaliza-

tion. GN’s computation is independent of batch sizes, and its accu-

racy is stable in a wide range of batch sizes. In the experiment,

we also compare the results of using BN and GN as normalization

respectively. 

In multi-task learning, different levels of tasks require different

image features, like UPerNet [28] . For the two different levels tasks,

i.e. superpixel generation and image segmentation, we further per-

form convolution operations on the image features obtained in the

previous step to obtain different feature vectors to meet the needs

of different tasks. Specifically, for the superpixel generation task,

we use a convolutional layer with a kernel size of 3 × 3 to ob-

tain the 30-channel feature vectors. For the image segmentation

task, we first perform the 3 × 3 convolution operation with 256

output channels, and then use the 1 × 1 convolution kernel to

obtain the 64-channel feature vectors. As shown in Fig. 1 , we in-

put the obtained feature vectors into the subsequent differentiable

clustering algorithm module and superpixel-pooling layer respec-

tively, and then use the proposed corresponding loss function to

train the network. 

3.6. Implementation details 

We implement our network based on Caffe [29] , which is a

very efficient deep learning framework and widely used in both

academia and industry. All codes are written using C++ and Python

wrapper of Caffe. 

For superpixel generation, like in the original SLIC algorithm,

we enforce spatial connectivity across pixels inside each super-

pixel cluster after (4) . This is accomplished by merging the super-

pixels smaller than certain threshold with the surrounding ones

and then assigning a unique cluster ID for each spatially-connected

component. For image segmentation, we enforce spatial connectiv-

ity after merging superpixels. Note that the operation of enforcing

spatial connectivity is not differentiable, we only take it as post-

processing and do not add it to neural network. 

We use the BSDS500 dataset [21] , which has been widely

used in the image segmentation community, to server as our

training data. Due to the small number of training samples in

BSDS500, data augmentation is necessory for training. We treat

each groundtruth as a separate sample, i.e. for each pair of image

and groundtruth, we feed it to the network as a training sample.

By using this manner, we get 1633 training/validation pairs and

1063 testing pairs in total. Beside, we adopt 2 common strategies

to achieve data augmentation, i.e. , flipping and cropping. Specifi-

cally, during training phase, we flip images left and right, randomly

clip the image into image blocks of size 201 × 201, to perform

data augmentation. Adam [30] is adopted to optimize our network.
he basic learning rate is set to 1e-5, and the number of generated

uperpixels is set to 100. The momentum is set to 0.99 to achieve

table optimization on relatively small-scale data, as suggested in

CN [31] . As described in Section 3.5 , the size of each mini-batch

s set to 1. 

We perform 500K iterations to train the deep learning model

nd select the final training model based on the accuracy of the

erification. 

. Experiments 

In this section, we conduct experiments on the widely used

SDS500 dataset [21] to evaluate our approach. The BSDS500

ataset consists of 500 images, including 20 0 for trainning, 10 0 for

alidating, and 200 for testing. It has become a standard bench-

ark for image segmentation, over-segmentation and edge detec-

ion. 

Image segmentation and superpixel segmentation are impor-

ant directions in the field of computer vision, and there are al-

eady many publicly available evaluation benchmarks. In our ex-

eriments, we use the Boundary F-measure (BF), Probabilistic Rand

ndex (PRI) and Global Consistency Error (GCE) as our main indica-

ors of segmentation, and use the BF, Boundary Recall (BR), under-

egmentation error (UE) and compactness as our main indicators

f superpixel. We report our main indicators at the optimal dataset

cale (ODS). We argue that ODS is more practical than optimal im-

ge scale (OIS), because for real applications there are no human-

nnotated segmentations. We select optimal parameters based on

verall performance at the scale of the whole dataset. The higher

he scores of BF, BR, PRI and compactness, the better the results.

he lower the GCE score and UE score, the better the results. 

To assess the effectiveness and efficiency of our algorithm, we

ill compare with some of the most advanced segmentation algo-

ithms, such as SSN [19] , FLIC [32] , SLIC [23] , LSC [33] , WT [34] ,

EL [18] , SFFCM [35] , align-hier [36] , EGB [24] . Among them, SSN,

LIC, SLIC, LSC, and WT are superpixel algorithms. DEL, SFFCM,

lign-hier, and EGB are image segmentation algorithms. 

.1. Hyper-parameter analysis 

We use the network structure shown in Fig. 1 as the main

odel that we name as ours-GN8, and use the BSDS500 dataset

o evaluate the different choices of each component in the net-

ork. We compare the performance in terms of superpixel genera-

ion and image segmentation of 4 variants of ours-GN8, which are

isted as follows, 

1. ours-BN: Substituting group normalization (GN) operation with

batch normalization (BN); 

2. ours-GN32: During GN, setting the group number to 32 instead

of 8 in ours-GN8; 

3. ours-conv7: Using the same feature, which is obtained from the

7th convolutional layer ( conv7 ), for both superpixel and image

segmentation; 

4. ours-w/o-concat: Discarding the shortcuts conv2 → concat1
and conv4 → concat1 ( i.e. not concating features from

conv2 and conv4 ). 

We evaluate the results from image segmentation and super-

ixel generation. 

As can be seen from Tables 1 and 2 , the original network works

est compared with other variants, indicating the rationality of the

omponents we selected. GN addresses the effect of BN on the

atch size dependency. For small batch size, GN can get better ef-

ect. But when there are too many groups, the effect decreases.

ccording to our experience, the shallow network includes more
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Fig. 2. Results on BSDS500 dataset. Left : Boundary P-R on segmentation, Middle : Boundary and Time on segmentation, Right :Boundary on superpixel. 

Table 1 

The performance of superpixel generation of 4 variants. 

Methods BF( ↑ ) BR( ↑ ) UE( ↓ ) compactness( ↑ ) 
ours-BN 0.547 0.884 0.068 0.373 

ours-GN32 0.546 0.897 0.066 0.376 

ours-conv7 0.521 0.812 0.094 0.413 

ours-w/o-concat 0.521 0.895 0.071 0.340 

ours-GN8 0.547 0.918 0.065 0.316 

Table 2 

The performance of image segmentation of 4 variants. 

Methods BF( ↑ ) PRI( ↑ ) GCE( ↓ ) 
ours-BN 0.661 0.807 0.146 

ours-GN32 0.685 0.820 0.171 

ours-conv7 0.492 0.714 0.088 

ours-w/o-concat 0.560 0.817 0.182 

ours-GN8 0.686 0.822 0.170 
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etailed information, the deep network contains more global in-

ormation, and the original network extracts more features than

urs-w/o-concat, so the segmentation result is better. The effect

f ours-conv7 decrease significantly, ours-GN8 is much better than

urs-conv7, thus verifying that in multi-task learning, different lev-

ls of tasks require different image features, like UPerNet [28] . 

.2. Evaluation experiments 

For superpixel generation and image segmentation, we compare

he classic algorithms with these two tasks on BSDS500 dataset.
ig. 2 shows the comparison of our algorithm with other algo-

ithms. The left and the middle one show segmnetation result

omparisons between the variants of our algorithm and other ones.

t can be seen from the first 2 subfigures of Fig. 2 that our al-

orithm performs well in image segmentation and is superior to

ther algorithms on the boundary F-measure and time. EGB ( )

oes not work well, although it takes the least amount of time. DEL

 ) achieves the best on the boundary F-measure, but it is slower

han our algorithm. The last subfigure of Fig. 2 shows the quanti-

ative comparisons between our superpixel and the state-of-the-art

nes. It can be seen that the superpixels we obtained achieve the

est performance on the boundary F-measure for most configura-

ions. In summary, our algorithm achieves a balance between time

nd effect. 

Quantitative comparison is further detailed in Table 3 and 4

The top two are highlighted in bold and underline , respectively).

e generate 10 0, 30 0 and 600 superpixels on a 321 × 481 im-

ge. Compared with other superpixel algorithms, although the su-

erpixels we generated are not completely compact, they perform

est on the BF and BR, and perform well on UE. In addition, the

mage segmentation we produced achieves good performance both

n the boundary F-measure and on the PRI and GCE. As can be

een from Table 3 and 4 , our algorithm performs well in super-

ixel generation and image segmentation, and can generate results

quivalent to those of advanced algorithms. And because our net-

ork is end-to-end trainable, this makes our algorithm more suit-

ble for many advanced visual tasks. 
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Fig. 3. Superpixel generation. The first column displays groundtruth from BSDS500 dataset. The last six columns show the results generated by SSN, FLIC, SLIC, LSC, WT and 

our method, respectively. 

Fig. 4. Image segmentation. The first two columns display original images and groundtruth from BSDS500 dataset. The last five columns show the results generated by DEL, 

SFFCM, align-hier, EGB and our method, respectively. 
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Table 3 

The evaluation results of superpixel generation. 

Methods N = 100 N = 300 N = 600 

BF( ↑ ) BR( ↑ ) UE( ↓ ) compactness( ↑ ) BF( ↑ ) BR( ↑ ) UE( ↓ ) compactness( ↑ ) BF( ↑ ) BR( ↑ ) UE( ↓ ) compactness( ↑ ) 
SSN 0.524 0.911 0.060 0.340 0.454 0.964 0.042 0.439 0.423 0.985 0.035 0.519 

FLIC 0.485 0.845 0.141 0.249 0.427 0.941 0.068 0.280 0.374 0.980 0.049 0.352 

SLIC 0.440 0.552 0.145 0.661 0.457 0.823 0.109 0.442 0.421 0.913 0.079 0.537 

LSC 0.491 0.873 0.095 0.288 0.439 0.950 0.059 0.414 0.398 0.979 0.045 0.509 

WT 0.518 0.837 0.124 0.438 0.464 0.868 0.076 0.586 0.422 0.934 0.060 0.719 

ours-sp 0.547 0.918 0.065 0.316 0.491 0.941 0.048 0.551 0.438 0.955 0.044 0.739 

Table 4 

The evaluation results of image segmentation. 

Methods BF( ↑ ) PRI( ↑ ) GCE( ↓ ) 
DEL 0.689 0.809 0.161 

SFFCM 0.622 0.776 0.259 

align-hier 0.545 0.738 0.141 

EGB 0.602 0.763 0.244 

ours-seg 0.686 0.821 0.170 
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We show some qualitative comparisons in Figs. 3 and 4 . As

hown in Fig. 3 , for superpixel segmentation, the boundaries of the

LIC and LSC results are irregular. The superpixel generated by SLIC

s more regular, but the boundary adherence is lacking. Our results

an obtain more regular boundaries and better boundary adher-

nce. As shown in Fig. 4 , for image segmentation, the results of

EL, SFFCM, and EGB are more fragmented, and the segmentation

esults of the align-hier method lack some details. Our results are

ess fragmented and visually closer to groundtruth. In summary, it

an be seen that our algorithm can reach a good level in both su-

erpixel segmentation and image segmentation. 

. Conclusion 

In this paper, we have proposed an end-to-end trainable net-

ork that can generate both superpixel and image segmentation.

pecifically, we use a fully convolutional network to extract fea-

ures of the image and then use the differentiable clustering algo-

ithm module to produce accurate superpixels. The superpixel fea-

ure is obtained by using the superpixel pooling operation, and the

imilarity of two adjacent superpixels is calculated to determine

hether to merge or not to obtain the sensing region. 

Our proposed algorithm has achieved good performance in both

uperpixel generation and image segmentation. Besides, since the

roposed algorithm is end-to-end trainable, it can be easily inte-

rated into other deep network structures. It makes our algorithm

ave the potential to be applied to many other vision tasks. 

As the future work, we plan to try some other merging algo-

ithm to get the segmentation results. The merging procedure used

n our paper is relatively simple and considers only the local simi-

arity. Some other procedures, such normlized cut [37] which adopt

 global perspective, is supposed to generate more consistent re-

ults. Besides, we also plan to explore the applications of our algo-

ithm in other tasks such as [4,13,14] . 
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