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Abstract

This paper addresses a challenging problem of regular-
izing arbitrary superpixels into an optimal grid structure,
which may significantly extend current low-level vision al-
gorithms by allowing them to use superpixels (SPs) conve-
niently as using pixels. For this purpose, we aim at con-
structing maximum cohesive SP-grid, which is composed of
real nodes, i.e. SPs, and dummy nodes that are meaningless
in the image with only position-taking function in the grid.
For a given formation of image SPs and proper number of
dummy nodes, we first dynamically align them into a grid
based on the centroid localities of SPs. We then define the
SP-grid coherence as the sum of edge weights, with SP lo-
cality and appearance encoded, along all direct paths con-
necting any two nearest neighboring real nodes in the grid.
We finally maximize the SP-grid coherence via cascade dy-
namic programming. Our approach can take the regional
objectness as an optional constraint to produce more se-
mantically reliable SP-grids. Experiments on object local-
ization show that our approach outperforms state-of-the-art
methods in terms of both detection accuracy and speed. We
also find that with the same searching strategy and features,
object localization at SP-level is about 100-500 times faster
than pixel-level, with usually better detection accuracy.

1. Introduction
To pursue efficiency, accuracy and scalability in large-

scale image analysis, many recent algorithms in computer
vision are now based on superpixels. From the angle of
MRF [8], superpixels (SPs), generated by grouping simi-
lar pixels into perceptually meaningful atomic regions [18],
can dramatically reduce the number of variables to be op-
timized, thus leading to significant speed-up and allowing
the analysis of long-range correlations. At the same time, s-
ince SPs capture most meaningful image structures, they are
usually well-aligned to image edges. As a result, some al-
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Figure 1: Grid regularized SPs for object localization. (a)
Query image (with query mask in the corner). (b) Target
image. (c) SLIC SPs (with irregular structure) [1]. (d)
SP-level objectness. (e)-(g) Object detection results of Tur-
boPixel [14], SuperLattice [17] and pixel-level RC with fin-
er searching step [23]. Due to the apparent scale variation
in query and target images, pixel-level RC needs finer step
to search the foreground box, which may become very slow.
(h) and (i) are the results of our approach by regularizing S-
LIC SPs (c) without/with the guidance of SP objectness (d),
respectively. In (e)-(i), the left-up corner shows the accura-
cy and running time.

gorithms, e.g. [9, 24, 25], if running at SP-level, can achieve
higher accuracy than running at pixel-level.
At the very beginning, superpixels were simply treated

as fast over-segmentations to the image [15]. As shown in
Fig. 1(c), image over-segmentations usually tend to gener-
ate SPs with variant sizes, shapes and irregular spatial dis-
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tributions. As the increasing usage of SPs in image parsing
[22], segmentation [18, 24], co-segmentation [10, 20], and
object localization [13], people start to realize the impor-
tance of structural regularities in SPs [1, 16, 21, 25].
Recently, some regular or near-regular SP algorithms

have been proposed, e.g. SuperLattice [17], LatticeCut [16],
TurboPixel [14] and min-energy based SPs [25]. They gen-
erally follow a similar strategy to generate SPs, i.e. seek-
ing proper tradeoff between the structural regularity and the
boundary accuracy of superpixels. As validated by our ex-
periments, for some kinds of images, current regular SP
methods can produce feasible results. However, due to the
complexity of natural images, e.g. the existence of both ho-
mogeneous and multi-scale texture regions, the influence
of changing lighting, shadows and occlusions, no particu-
lar method can guarantee satisfactory segmentations for all
types of images. Thus, compared to particular regular SP
algorithms, it is more desirable to find a way rectifying ar-
bitrary segmentations into a regular structure. Besides, an-
other notable weakness of current regular SPmethods is that
their performance may highly depend on the pre-computed
edge map [16, 21]. This paper, to the best of our knowl-
edge, for the first time proposes a generic approach to opti-
mally regularizing arbitrary SPs into a regular grid. By this,
we can both fully take advantage of the strength of various
image segmentation/SP methods [1, 6, 5, 8], and enjoy the
desirable properties of grid at the same time.
To this end, we define cohesive SP-grid, which is com-

posed of (1) real nodes, i.e. real SPs generated by any
appropriate superpixel or segmentation algorithms, and
(2) dummy nodes that are meaningless in the image with on-
ly position-taking function in the grid. We aim at construct-
ing maximum cohesive SP-grid that regularizes all pairwise
SP connections into a lattice, while preserving the most im-
portant image structures. We propose a two-step approach
for this purpose. First, we unevenly assign all real nodes
into a grid by minimizing the overall locality discrepancy
cost. The initial cohesive SP-grid is obtained by append-
ing proper number of dummy nodes at the end of each grid
column. We then iteratively refine the cohesive SP-grid by
optimizing each grid column within its contemporary con-
text configurations. We call this process cascade dynamic
programming (DP) that converges very fast in practice. As
an optional compensation, the regional objectness score [2]
can also be used as an extra constraint to refine the SP co-
herence measurement, thus leading to a more semantically
feasible SP-grid. Experiments on object localization show
that our approach outperforms state-of-the-art ones in terms
of both detection accuracy and speed. With the same strat-
egy and features [23], object localization via our SP-grid
is 100-500 times faster (including grid regularization and
matching time) than pixel-level matching, and usually pro-
duces better detection accuracy.

2. Related Work
Superpixels. The concept of superpixels stems from

the homogeneous subregions generated by a fast over-
segmentation to the image, e.g. MeanShift [5] and EGS [6].
This kind of SPs usually form an irregular graph, with SP
boundaries well-aligned to image edges. They were widely
used in image segmentation [18, 15]. Recently, people start
to realize the advantages of regular structured SPs. Typical
methods include SLIC [1], TurboPixel [14], SuperLattice
[17] and LatticeCut [16]. To maintain the structural reg-
ularity, both SLIC and TurboPixel start from a set of uni-
formly placed seeds, and respectively use k-means cluster-
ing and geometric-flow to generate final SPs. In contrast to
the near-grid property of SLIC and TurboPixel, SuperLat-
tice and LatticeCut are able to produce exact grid structured
SPs. For instance, based on a pre-computed reliable edge
map, SuperLattice adopts a greedy strategy to generate the
optimal paths of SP-grid by following the input edge map
and satisfying the grid structural constraints [17].
Fast object localization. Recent useful object local-

ization routines includes Region Covariance (RC) [23] and
Efficient Subwindow Search (ESS) [12]. In [23], the R-
C descriptor encoding color, gradient and locality features
has been proposed for robust object detection in differen-
t images. The searching efficiency using RC descriptor
is guaranteed by a O(1)-time integral-image based rectan-
gle mean/covariance computation. In contrast, ESS uses a
branch-and-bound searching strategy, but also relies on the
integral-image computation as a core step. The ESS strat-
egy has been further refined by a linear-time Kadane’s al-
gorithm by [4] and been extended to detect objects within
large-volume image database in [11]. Note that, integral-
image acceleration cannot be directly applied to irregular
graphs with arbitrary structures.
Dynamic programming. Our approach utilizes DP to

obtain the optimal locality-based SP-grid initialization and
to maximize the overall SP-grid coherence. As an effec-
tive method for seeking globally optimal solution to discrete
optimization problems, DP has a long history in computer
vision and is still widely used in many recent algorithms
[3, 7]. However, there is no general way to apply DP to any
kind of irregular graphs of SPs.
With the proposed approach, most successful algorithms

for both object localization and DP-based applications can
be directly applied to SP-level, via any suitable type of SPs.

3. Overview
To regularize arbitrary SPs with any kind of irregular

structure, we consider optimally allocating SPs within a vir-
tual grid. By constructing such grid, only the most impor-
tant pairwise SP connections can be explicitly preserved.
In the regularization process, we take all possible SP pairs
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Figure 2: Algorithm flow of maximum cohesive grid regularization of arbitrary superpixels. See text for more details.

into consideration to capture both local and global (i.e.
long-range) image structures. Since the SP pair coherence
defined as their centroid locality and regional appearance
closeness in Eq. (10) captures image SP-level structures, an
optimal SP-grid should preserve maximum overall coher-
ence. Besides, another issue is that all SPs may not neces-
sarily occupy all positions in the virtual grid. Thus, we need
also to incorporate position-taking dummy nodes.

Definition 1 (Cohesive SP-Grid) Composed of real nodes
(i.e. the input SPs) and position-taking dummy nodes, a co-
hesive SP-grid needs to satisfy three conditions: (1) The
edge weight of any two neighboring real nodes equals to
their coherence; (2) The edge weight of any two neighbor-
ing dummy nodes is 0; and (3) For any two real nodes p
and q, if they lie in the same row/column and there are no
in-between real nodes in that row/column, the weight of the
direct path from p to q equals to their coherenceCoh(p, q).1

Note that, condition (2) and (3) in the Definition 1 ensure
the only positive-taking function of dummy nodes. Hence,
for a given set of real nodes P and dummy nodes D, our
objective of generic SP grid regularization can be formally
expressed as constructing an optimal cohesive SP-grid G =
〈P ∪ D, E〉 with maximum overall coherence:

Coh(G) =
∑
e∈E

Coh(e). (1)

4. Maximum Cohesive Grid of Superpixels
For a given set of superpixels P , seeking global maxi-

mum cohesive SP-grid is generally intractable, e.g. let r× c

1Direct path from p to q is the sequence of edges connecting them and
passing only dummy nodes in the same row/column of p and q. The weight
of a direct path is the sum of all edge weights in the path.

Figure 3: Locality-based dynamic SP-grid initialization.
The black line indicates the position of a column-cut. See
text for details.

be the size of target DP-grid, the solution space is of size
(|P| + 1)rc.2 Moreover, recalling condition (3) in Defini-
tion 1, the state of a grid position, i.e. either some real node
or the dummy node, highly correlates to its nearest neigh-
boring positions, if they together form a direction path. This
may induce many high-order terms and make the energy
function very hard to be solved [19].
As shown in Fig. 2, this paper proposes a two-step near-

otimum approach to (1) cohesive SP-grid initialization, and
(2) cohesive SP-grid maximization by cascade DP.

4.1. Locality-based SP-grid initialization

For a good cohesive SP-grid, the relative localities of SPs
in the image should be respected. So, our first step is to op-
timally assign all SPs ofP into c columns according to their
normalized localities. Note that, in this paper, both of our
initialization and maximization are conducted in column-
s only, which is empirically proven to be comparable with
optimizing in rows or in both rows and columns for object
localization by our experiments.
To do so, we first sort all SPs into a 1D sequence Pxsort

with increasing x-coordinates of their centroids. The c
columns can be determined by c − 1 column-cuts, with all

2This assumes an SP can be assigned to more than one grid positions.
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Algorithm 1 Locality-based SP-grid initialization
Require: The set of input SPs P
Ensure: Optimal B̂ = {b̂i}c−1

i=1

1: /* Stage 1: compute C(k, n) and BL(k, n) */
2: for n = 1 to |P| do
3: for k = 2 to c do
4: Compute C(k, n) and BL(k, n) using Eqs. (4)–(6);
5: end for
6: end for
7: /* Stage 2: back retrieving B̂ */
8: Set n := |P| and b̂1 = 1;
9: for k = c to 2 do
10: Set b̂k−1 := BL(k, n);
11: Set n := b̂k−1 − 1;
12: end for

SPs between two consecutive cuts forming a particular col-
umn. Note, the SPs within a column are re-arranged in
an ascending order of the y-coordinates of their centroid-
s. Hence, a set of column-cuts B = {bi}c−1

i=1 defines a
particular way of partitioning all SPs of P into c column-
s, where bi = p means the #i column-cut lies right between
the #(p − 1) and #p SPs of Pxsort. Then, we measure its
goodness by the following locality discrepancy score, and
seek an optimal B̂ = argminB Loc(B):

Loc(B) =
c∑

i=1

loc(bi, bi+1), (2)

where Loc(B) is the sum of discrepancy values of all c
columns. For the ease of expression, we set bc = |P|+ 1.

loc(bi, bi+1) =
ωsep · intrai
max(interi, ε)

+ ωlen · (Li − L̄). (3)

As shown in Fig. 3, intrai is the intra-column discrepancy
measured by the average centroidL2-distance of all consec-
utive SP pairs in the #i column; interi is the inter-column
discrepancy measured by the x-coordinates difference be-
tween two neighboring SPs of the #i column-cut; constant
ε > 0 avoids dividing by zero; Li = bi+1 − bi + 1 is the
length of the #i column and L̄ = |P|

c is the average colum-
n length. Note that, Loc(B) encourages nearly equal-sized
columns with minimum intra-discrepancies and maximum
inter-differences. ωsep and ωlen are the weights of column
separability and size regularity in Eq. (2), respectively.
We can efficiently obtain the global optimum B̂ using the

following DP formulation:

loc(p, k, n) = C(k − 1, p− 1) + loc(p, n), (4)

C(k, n) = min
k≤p≤n

loc(p, k, n), (5)

BL(k, n) = arg min
k≤p≤n

loc(p, k, n). (6)

#k

#N

#n

#p

( ) nodesp+k-2

S( )k-1,p-1

coh( )p,k,n

real node

dummy node

column

Figure 4: Maximizing cohesive SP-grid using cascade DP.
The blue solid-lined region is the correlated subgraph used
to calculate coh(p, k, n); the orange solid-lined region is
the correlated subgraph of S(k − 1, p − 1); while the red
dash-lined region is the correlated subgraph corresponding
to S(k, n). The red arrow-lines starting from the #p position
in column ρ denote the direct path connecting two nearest
neighboring left and right real nodes of #p. See text for
more details.

Note that, loc(p, k, n) is the intermediate discrepancy value
of partitioning the first n SPs of Pxsort into k columns with
the last column-cut lying right between the #(p− 1) and #p
SPs; C(k, n) is the minimumdiscrepancy value of partition-
ing the first n SPs ofPxsort into k columns;3 BL(k, n) is the
back-retrieval table that records the #(k−1) position of opti-
mal column-cuts partitioning the first n SPs into k columns.
Then, we can efficiently obtain B̂ with minimum discrepan-
cy using Algorithm 1 under the following boundary condi-
tions: 2 ≤ k ≤ c, 1 ≤ n ≤ |P|, C(1, n) = loc(1, n) and
BL(1, n) = 1. Based on B̂, we construct the initial cohesive
DP-grid G(0) by simply padding proper number of dummy
nodes at the end of each column (see Fig. 2).

4.2. Dynamic maximization of cohesive SP-grid
Starting from G(0), our near-optimal maximum cohesive

SP-grid G∗ is progressively refined by optimizing its every
column under current configurations of other columns. S-
ince we in turn repeatedly update every column of G ∗ via
DP to maximize the overall SP-grid coherence, we name
the method cascade DP.
For a particular column ρ of G ∗, we use the following

DP process to update it under the context of current config-
urations of other columns in G ∗, while satisfying the three
conditions of Definition 1:

S(k, n) = max
k≤p≤n+1

[S(k − 1, p− 1) + coh(p, k, n)], (7)

3Clearly, Loc(B̂) = C(c, |P|).
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BS(k, n) = arg max
k≤p≤n+1

[S(k−1, p−1)+coh(p, k, n)]. (8)

Note that, S(k, n) is the maximum overall coherence of the
correlated subgraph, asserting the maximum increments
caused by allocating k dummy nodes in the first n real n-
odes of the current column ρ. The correlated subgraph cor-
responding to such change is composed of all the nodes in
the first n+k rows of G∗ whose states (i.e. either some par-
ticular real node or the dummy node) jointly contribute to
increasingCoh(G∗). As shown in Fig. 4, S(k, n) is actually
the changed component of Coh(G ∗).
Clearly, we need only maximizing S(k, n), which can

be dynamically expressed as the maximum sum of S(k −
1, p − 1) and coh(p, k, n), where coh(p, k, n) denotes the
extra coherence increments by assigning the #k dummy n-
ode right in front of the #p real node of ρ. If p = n + 1,
this dummy node will be assigned right after the #n real n-
ode. BS(k, n) is the back-retrieval table recording the best
position of #k dummy node that forms the best configura-
tion of adding k dummy nodes in the first n real nodes of
ρ. Note, to meet condition (3) of Definition 1, calculating
coh(p, k, n) needs to find the nearest horizontal real node
neighbors for a particular position p (see Fig. 4).4 We re-
peat the above process column by column till convergence.
For a particular column ρ, the whole SP-grid can be di-

vided into two correlated subgraphs, as shown in Fig. 4 sur-
rounded by orange and blue solid-lines. The overall coher-
ence of these two correlated subgraphs is S(k − 1, p − 1)
and coh(p, k, n), respectively. It is clear that maximizing
the coherence of the first (n+k) rows of G ∗ is equivalent to
maximizing the sum of coherence of the two correlated sub-
graphs, i.e. S(k− 1, p− 1) + coh(p, k, n), since other edge
weights are irrelevant to the state of column ρ. In practice,
we can easily calculate coh(p, k, n) as:

coh(p, k, n) =

n∑
i=p

Coh(i, ir) + Coh(i, il) + Coh(kl, kr),

(9)
where il and ir is the left-first real node and right-first real
node for #i real node of column ρ, k l and kr is the left-first
real node and right-first real node for #k dummy node of
column ρ. In Fig. 4, Coh(i, ir) and Coh(i, il) are shown as
red arrow-lines (solid and dash ones),Coh(k l, kr) is shown
as the blue arrow-line, respectively.

4.3. Superpixel coherence metric

We calculate the coherence of two SPs according to both
their localities and appearances. For the #p SP of P , we
4As we only update columns of G∗, the overall coherence along vertical

direction of any column is fully determined by G(0) and is invariant to
any configurations of that column. So, we can treat the vertical coherence
component of coh(p, k, n) for the #i column as a constant Vi, which can
be pre-computed using G(0).

represent its locality as the normalized coordinates o(p) of
its centroid. To derive the appearance model of SPs, we
uniformly quantize each channel of the RGB color space
into 16 levels and then calculate the appearance histogram
of each SP in the space of 163 bins. Then, we define the
coherence of any two SPs p and q as

Coh(p, q) = exp
(
− ‖op − oq‖2

ωpos
+

Ba(Hp, Hq)

ωapp

)
, (10)

where op and oq are the normalized centroids of superpix-
el p and q, while Hp and Hq are the quantized color his-
tograms of p and q, respectively. The Bhattacharyya co-
efficient Ba(Hp, Hq) =

∑163

b=1

√
Hp(b) ·Hq(b) is used to

measure the similarity between two histogramsHp andHq .

4.4. Other issues
Objectness guidance. As shown in Fig. 1, the accura-

cy of our cohesive SP-grid for object detection may be fur-
ther refined by incorporating the SP-level objectness that is
defined as the mean objectness of all inclusive pixels. We
compute the objectness of each pixel by averaging the ob-
jectness scores of a number of randomly-sampled subwin-
dows in the image using the method of [2]. We impose the
guidance of thresholded SP objectness in the followingway:
for any two neighboring SPs p and q in the image, if they
both survive the objectness thresholding, we amplify their
original coherence Coh(p, q) by a constant factor F > 1.
Convergence and complexity. Since our cohesive SP-

grid initialization and maximization strictly satisfy Defini-
tion 1, the resultant G∗ is certainly a cohesive SP-grid. Be-
sides, the cascade DP guarantees strictly increasing coher-
ence of G∗ in each iteration. The complexity of SP-grid
initialization is O(|P|2c), where |P| is the number of input
superpixels and c is the column number of target SP-grid.
Due to the computation of correlated subgraphs, the com-
plexity of maximizing column ρ is O(|ρ|3m), where |ρ| is
the number of real nodes and m is the number of dummy
nodes to be added in the column.

5. Experimental Results
In this paper, we evaluate our approach and two state-

of-the-art regular (or near-regular) SP methods, i.e. Super-
Lattice [17] and TurboPixel [14], by the task of object lo-
calization on benchmark datasets. Note, for TurboPixel, we
simply assign the grid coordinates for each SP as the grid
coordinates of its corresponding seed [14]. We also use t-
wo versions of pixel-level region covariance (RC) search-
ing [23] as comparative baselines, i.e. a fast version with
5-pixel searching step and [0.9, 1.1] size ratio, and a slower
version with 2-pixel searching step and [0.8, 1.2] size ratio.
To demonstrate the generality of our approach, we have ex-
tended three widely-used irregular SP methods, SLIC [1],

317631763178



Method Accuracy (exact query) Accuracy (bndbox query) SP Time Matching Time
SP-Grid (SLIC) [1] [37.0%, 67.2%, 97.6%] [29.4%, 59.6%, 88.6%] 0.06s 0.03s
SP-Grid (EGS) [6] [23.0%, 66.7%, 87.6%] [23.0%, 62.5%, 87.6%] 0.05s 0.03s
SP-Grid (MS) [5] [35.7%, 68.3%, 94.1%] [30.6%, 61.5%, 87.7%] 1.60s 0.04s
SuperLattice [17] [14.2%, 55.1%, 79.3%] [21.0%, 52.5%, 80.5%] 0.07s 0.09s
TurboPixel [14] [26.1%, 54.7%, 91.8%] [10.3%, 44.4%, 77.3%] 1.72s 0.14s
Pixel-level (fast) [23] [1.4%, 47.6%, 71.1%] [1.3%, 42.6%, 70.2%] – 4.09s
Pixel-level (slower) [23] [13.8%, 48.8%, 79.3%] [1.3%, 43.8%, 77.3%] – 18.34s

Table 1: Average accuracy and speed of object localization using region covariance [ 23] on 50 benchmark image pairs. The
accuracy rates are shown in the order of [min,mean,max] values. Note, SuperLattice [ 17] still needs additional time to
pre-compute edge map, which is not counted in this table.
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Figure 5: Performance comparison of object localization in benchmark co-segmentation image pairs. Note, Pix (fast/slower)
means for each image we show the better detection results generated by Pix (fast) and Pix (slower).

EGS [6] and MeanShift (MS) [5], in the experiments. For
the fairness of comparison, all SP-level methods used the
same integral-image based searching strategy and RC fea-

tures [23]. Besides, the experimental results were obtained
using the original implementations of all tested methods. 5

5The source code of our approach will be released soon.
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For any object localization result R, in this paper, we
measure its accuracy rate compared to ground truth GT
as the cardinality ratio of their intersection and union sets
Acc(R) = |R∩GT|

|R∪GT| .
We first selected 50 image pairs from the benchmark im-

age co-segmentation dataset [20], and compared the average
performance of all seven tested methods. To show the best
performance of all methods, for each image, every method
produced multiple detection results using a group of rea-
sonable SP-generation parameters, and used the best result
for comparison. Table 1 shows the comparative results. We
can clearly see that for all methods, exact query constantly
leads to higher accuracy than query by bounding box. For
pixel-level RC, searching by finer steps may lead to better
results than using large steps, but with the cost of rapidly in-
creased running time. The grid regularity of TurboPixel and
SuperLattice help to quickly produce the detection results,
with comparable (or better) accuracy to pixel-level meth-
ods. Among all test methods, the proposed SP-grid helps
SLIC, EGS and MS to generate the highest detection accu-
racy using exact queries. Note that, except for MS, SP-grid
based object localization is 100-500 times faster (including
SP generation, SP-grid regularization and matching time)
than pixel-level matching, while producing more than 15%
accuracy improvements. All results of our approach report-
ed in Table 1 were generated without objectness guidance.
Fig. 5 shows some real object detection results. We can

see that compared to SuperLattice and TurboPixel, our ap-
proach tends to producemore accurate detection results bet-
ter aligned to the real object boundaries. This is because, by
maximizing the overall coherence, our approach preserves
the most important image structures in the grid. For the first
three images in Fig. 5, our approach used objectness guid-
ance to refine the SP pair coherence matrix using F = 10.
In Fig. 6, we compare our approach and state-of-the-art

methods on the tolerance of rotation and scaling in object
localization, i.e. the object regions have increasing rotation
and scaling variations, which may bring more difficulties to
pixel-level detection. We can clearly see that the proposed
approach is quite robust to both rotation and scaling vari-
ances. In contrast, the performance of baseline pixel-level
RC degrades quickly for increasing scaling factors.
As shown in Fig. 7, we also tested object detection on

multiple images. Similarly, we observe that our approach
produces the best detection results. It seems that the spatial
regularity term in TurboPixel and SuperLattice makes them
prone to generate near-rectangle regions, which may lower
their accuracy for detecting articulated objects, such as the
cow and swan in Fig. 7, horse and bear in Fig. 5.

6. Conclusion
We have proposed an efficient approach to regularize ar-

bitrary superpixels into a regular grid by adding dummy n-

Figure 6: The robustness of our approach to rotation and
scale variances in object localization.

odes and maximizing the overall coherence. To the best of
our knowledge, it is the first method served for this generic
purpose. We also show how to incorporate regional object-
ness as an extra (optional) constraint to produce semanti-
cally more feasible SP-grids. As demonstrated by exten-
sive experiments in object localization, our approach out-
performs state-of-the-art methods in terms of both detection
accuracy and speed. Besides, the proposed approach can be
readily applied to a lot of other kinds of vision tasks, such
as object co-segmentation and recognition etc.
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