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ABSTRACT
The discrepancy between synthetic and real data is crucial to
the performance of domain generalization for semantic seg-
mentation. Since real data is not always accessible, a popular
line of approaches is to enhance the diversity of synthetic data
via either complex adversarial generation or unstable styliza-
tion. However, the internal structure of the synthetic image is
often neglected. To largely explore useful information in syn-
thetic data, we observe that, although objects of the same cat-
egory have different texture patterns between domains, their
shapes are quite similar. Based on this observation, we argue
that focusing on structural information and alleviating texture
dependence are effective ways to improve generalization ca-
pability. In this work, we propose an end-to-end network,
which explicitly constrains the network to learn shapes and
spatial knowledge, and implicitly relieves the texture reliance
of the network. Extensive experiments verify the effective-
ness of our proposed method and demonstrate its clear advan-
tages over other competitors.

Index Terms— Domain generalization; Synthetic-to-
real; Semantic segmentation

1. INTRODUCTION

Semantic segmentation has been one of the most typical and
essential tasks in computer vision and multimedia, where
large-scale annotated real images are usually required. Since
pixel-wise labeling is extremely time-consuming and labori-
ous, domain adaptation [1] and domain generalization [2, 3]
based on synthetic data training have drawn growing atten-
tion. Different from domain adaptation that has both synthetic
images and real images available in the training phase, do-
main generalization only utilizes synthetic images for training
and then test on unseen real images. Thus, domain general-
ization is more challenging than adaption. However, due to
the limitation of rendering quality on synthetic data, the tex-
ture discrepancy between the synthetic and real data would
induce the degradation of network generalization. To enhance
the generalization capability, recent approaches in stylized
transformation [4, 5], adversarial generation [6], and repre-
sentation learning [7] are adapted to mitigate the gap between
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Fig. 1: The settings of different methods on real and synthetic
datasets during training and testing. A visual comparison of
discrepancy in the shape and texture of the same objects be-
tween the synthetic image and real image.

domains. Despite the successes of these methods, the pre-
processing of synthetic data seems tedious and the content of
generated texture-diversified synthetic images cannot be guar-
anteed.

To address the aforementioned limitations, we consider
taking advantage of the internal structure in synthetic images
themselves and effectively eliminating/reducing the need for
complex pre-processing steps. As can be viewed in Fig.1,
the shapes of objects such as persons, vehicles, and traffic
lights in the synthetic domain are similar to those in the real
world, while the textures of the objects are often quite dif-
ferent. In other words, there is a slight difference in terms
of shape and spatial information of objects between the syn-
thetic image and the real image, whereas a great texture dis-
crepancy appears. Motivated by this observation, we propose
an end-to-end domain generalization network without the re-
quirement of pre-processing, which consists of two modules,
including the cross-layer module Spatial Structure Intensifier
(SSI) and the adjacent layer module Texture Structure Gen-
eralizer (TSG). Due to similar shapes of objects, SSI aims to
enhance the generalization ability of the network by learn-
ing the (almost) invariant shape and spatial feature represen-
tation. Meanwhile, because of the strong difference in ob-



Fig. 2: The overall architecture of the proposed framework is shown in the top dotted box. The bottom two dotted boxes
illustrate the internal structure of Texture Structure Generalizer (TSG) module and Spatial Structure Intensifier (SSI) module.
The lines in different colors represent the feature flow direction of feature layers.

ject texture, TSG is designed to alleviate the reliance of net-
work classification on specific textures. Both SSI and TSG
are interspersed in the network architecture, one by enhanc-
ing domain-invariant learning, the other by reducing the im-
pact of domain variants, ultimately achieving the purpose of
improving network domain generalization ability. The main
contributions of this paper can be summarized as follows:

• This paper proposes a network for synthetic-to-real
generalization, the goal of which is to improve gener-
alization ability through seeking internal structures and
relieving texture reliance.

• We customize two efficient and flexible modules, i.e.
Spatial Structure Intensifier (SSI) and Texture Structure
Generalizer (TSG), to help achieve the generalization
by enhancing shape learning and normalizing texture
feature representation, respectively.

• Experiments are conducted to reveal the superiority
of our approach compared with methods without pre-
processing. Also, we achieve competitive performance
with those using pre-processing.

2. RELATED WORK

This section will briefly review representative works in do-
main adaptation and domain generalization, which are mainly

used to address the problem of semantic segmentation when
real annotated images are invalid.

Domain Adaptation. Domain adaptation can be per-
formed using unlabeled data from the real domain and labeled
data from the synthetic domain. The key to domain adap-
tation is to reduce the gap between the distributions of data
in real and synthetic domains. The common way is directly
using maximum mean discrepancies (MMD) [8, 9] to mini-
mize the difference between the distributions of two domains.
However, such metrics are limited as minimized MMD can-
not guarantee the two domains are well-aligned. Image-to-
image translation and style transfer [4, 5] are two represen-
tative manners to reduce the discrepancy at the input level of
two domains by converting the style of the synthetic image
into the real image. Meanwhile, adversarial learning methods
[10, 11], which usually rely on the discriminator mechanism
to maximize the confusion between domains, can implicitly
align the cross-domain features [12] and improve the accu-
racy of the classifier. Unfortunately, the real data is not al-
ways accessible during training and the distribution discrep-
ancy cannot be estimated from a single domain. Therefore,
these techniques can hardly be applied to domain generaliza-
tion unmodified.

Domain Generalization. Compared with domain adap-
tation, domain generalization purely utilize the synthetic im-
ages [13] in training and yet aims to generalize well on the
real domain. To improve the generalization performance of
networks, a number of appealing methods have been pro-



posed. Some methods leverage multiple source domains or
image randomization [14, 3] to boost the diversity of inputs
explicitly. In addition, several works expand source data by
generating new stylized synthetic images [15] through adver-
sarial learning and style transfer [5]. However, it is inflexible
to perform complex adversarial generation or unstable styl-
ized transformation on the synthetic image. Another technical
line for solving this problem is from the perspective of latent
feature representation [2], such as Instance Normalization and
Batch Normalization. Inspired by these methods, we consider
enhancing the classification ability of the network based on
spatial information while using texture generalization, and at
the same time do not perform any complex pre-processing on
data during training.

3. METHODOLOGY

The focus of this work is on how to solve the domain general-
ization problem: a model is trained on the synthetic domain,
expecting to generalize well on many unseen real-world do-
mains. Due to the discrepancy between domains, as previ-
ously analyzed, our method aims to increase the domain gen-
eralization ability by enhancing spatial feature learning and
generalizing special textures on the synthetic data without
pre-processing. Towards this purpose, two efficient modules
are designed, namely Spatial Structure Intensifier (SSI) mod-
ule and Texture Structure Generalizer (TSG) module. In what
follows, we will first describe the overall architecture of our
method, and then detail the designed TSG and SSI.

3.1. Overview of the proposed framework

The overall framework is simple as depicted in Fig.2. Given
a synthetic image as input, here we do not execute any pre-
processing like stylization and randomization. Starting from
the architecture of feature extraction network ResNet-50, we
insert two types of modules among the feature layers: (1)
adjacent layer module TSG and (2) cross-layer module SSI.
More specifically, we add texture feature generalization TSG
after each feature layer, so that texture can be normalized
layer by layer. This dense connection can effectively allevi-
ate texture dependence between each feature extraction layer,
thus improving the generalization ability of the network. Fur-
thermore, cross-layer spatial structure intensifier SSI is de-
signed to fuse the previous features into the interval feature
layer, which is explicitly supervised by edge information. Im-
portantly, the features after SSI are first added to the features
of the layer and then enter into the TSG module to avoid in-
troducing texture features that have not been normalized pre-
viously. Finally, the feature of the last TSG module is fed
forward into the semantic segmentation module to generate
the final predictions.

Synthetic Image GT Edge Predicted Edge

Fig. 3: Predicted edge maps of synthetic images, which are
output through a branch of the SSI module.

3.2. Texture Structure Generalizer (TSG)

Texture Structure Generalizer (TSG) is proposed to generalize
the texture on the feature level. Pixel-level semantic segmen-
tation relies heavily on the texture of the object, therefore, the
network trained with the synthetic data cannot perform well
in the unseen real data due to the texture discrepancy. To ad-
dress this problem, texture generalization is an option via al-
leviating the reliance of networks on texture. Recent studies
[16, 5] have found that for complex appearances, such as style
or texture, this information can be encoded in the mean and
variance of hidden feature layers. Hence, the Instance Nor-
malization (IN) [17] layer shows the potential to effectively
eliminate the apparent discrepancy. However, the IN opera-
tion is always accompanied by some content losses. Based on
these considerations, we first normalize the style of features
through IN to generalize the texture and then add the channel
attention mechanism to retain useful information.

As shown in Fig.2, we subtract the original feature from
the feature after IN. Next, the channel attention mechanism
is implemented to extract useful information from the sub-
tracted feature. Finally, the extracted information and the fea-
ture after IN are added and sent into the next feature layer,
which ensures the integrity of the content largely. The output
feature of TSG can be obtained by:

F output = CA
(
F input − IN

(
F input))+ IN

(
F input) , (1)

where CA denotes the channel attention mechanism [18],
while IN stands for the Instance Normalization. In our net-
work, four TSG modules, respectively attached after feature
layers 1, 2, 3, and 4, are utilized. Therefore, the feature of
each layer can be efficiently normalized by TSG modules and
the model can achieve better texture generalization.

3.3. Spatial Structure Intensifier (SSI)

Spatial Structure Intensifier (SSI) is built to boost the abil-
ity of network classification through spatial information. Al-



though rendering techniques are still limited, current schemes
have made the appearance of the synthetic object look almost
identical to the real. For example, as can be viewed in Fig.1,
the shapes of vehicles, light poles, persons, and other objects
are similar in the synthetic and real images. To this end,
we design the SSI module, which utilizes the spatial atten-
tion mechanism and generates the predictive edge map to pay
attention to spatial and shape features. We adopt three SSI
modules, respectively attached after feature layers 1, 2, and 3.
Employing interval connection between feature layers, low-
level spatial features can incorporate into high-level ones. In
this way, the network can retain more high-resolution shape
features, thus improving the image segmentation accuracy.

For more details, the input feature is firstly enhanced by
the spatial attention mechanism [18] and then divided into two
branches. One branch adjusts the number of channels through
the 1×1 convolutional layer and then inputs to the next TSG.
The other branch outputs the predicted edge map through a
module containing three convolution layers and calculates the
boundary loss with the ground truth generated by semantic la-
bels. In addition, an extra convolution layer is used to further
fuse the three SSI output edge images into one. This super-
vised training can explicitly assist the SSI module in learning
the spatial information of images. Figure 2 exhibits the struc-
ture of the edge extraction module and Figure 3 shows the
edge prediction results.

3.4. Objective Function

Our model is trained with supervised semantic segmentation
loss and boundary loss on the synthetic domain. We define
X as the input image, Y as its respective boundary ground
truth, and Ŷ as a set of predicted edge prediction. Ŷ =
[ŷ1, ŷ2, ŷ3, ŷf ], where ŷi has the same size as Y . ŷ1, ŷ2, ŷ3
are the edge predictions of three SSI modules respectively,
and ŷf is the result of the fused edge map. As the model is
deep supervised, class-balanced cross-entropy loss is used as
the boundary loss. A single edge prediction loss function can
simply imposed as the following:

ℓnboundary (W,wn) = −β
∑
j∈Y+

log σ (yj = 1 | X;W,wn)

−(1− β)
∑
j∈Y−

log σ (yj = 0 | X;W,wn) .
(2)

Then, the boundary loss Lboundary is the sum of each ℓboundary ,
which can be written as:

Lboundary =

4∑
n=1

ℓnboundary (W,wn) , (3)

where σ(·) is the sigmoid function. W is the collec-
tion of network parameters and w is the n corresponding
parameter. β = |Y−| / (|Y−|+ |Y+|), and (1 − β) =

Table 1: Quantitative results of domain generalization from
GTA5 to Cityscapes. We measure the mIoU performance of
the 19 classes in the validation set of Cityscapes. The back-
bone of these methods all uses ResNet-50. BS denotes the
batch size.

Methods Pre-processing BS mIoU% mIoU↑%
baseline - 16 22.17 7.47↑IBN-Net [2] 29.64
baseline

✓ 32 32.45 4.97↑DRPC [19] 37.42
baseline

✓ 6 25.88 9.39↑CSG [20] 35.27
baseline - 2 28.95 7.63↑RobustNet [21] 36.58
baseline

✓ 2 31.70 6.90↑Peng et al. [3] 38.60
baseline - 1 26.21 8.03↑Ours 34.24

|Y+| / (|Y−|+ |Y+|). |Y−| and |Y+| denote the edge and non-
edge in the ground truth. In addition, the semantic segmenta-
tion loss given by standard cross-entropy loss is defined as:

Lseg = −
∑
h,w

C∑
c=1

y(h,w,c)
s log p(h,w,c)

s , (4)

where p
(h,w,c)
s is the predicted semantic segmentation result.

y
(h,w,c)
s is the semantic ground truth label. C is the number

of classes.
Combining the above two terms yields our final objective

function as follows:

Ltotal = Lseg + λ · Lboundary , (5)

where λ is the hyper-parameter used to balance the impor-
tance of semantic segmentation loss and boundary loss. In
this paper, λ is empirically set to 1.5.

4. EXPERIMENTS

In this section, we present the experimental results and com-
pare them with other domain generalization methods on the
semantic segmentation task. We also analyze the performance
of the proposed modules through the ablation studies.

4.1. Experiment setup

Synthetic Dataset: In the experiments of domain generaliza-
tion on semantic segmentation, we adopt the dataset GTA5
[13] for training. GTA5 is a large-scale synthetic dataset
containing 24966 urban scene images, which are rendered
by Grand Theft Auto V game engine and automatically per-
pixel annotated into different semantic categories. The orig-
inal GTA5 dataset provides pixel-level semantic annotations



Fig. 4: Visual results of the semantic segmentation on the real dataset Cityscapes. Both TSG and SSI modules effectively
improve the performance of the framework.

Table 2: Performance contribution of our designed modules.

Network TSG SSI mIoU % mIoU↑ %

ResNet-50

26.21 -
✓ 31.72 5.51↑

✓ 32.23 6.02↑
✓ ✓ 34.24 8.03↑

of 33 classes and shares the same set of 19 semantic classes
with the real-world dataset.
Real-world Dataset: To evaluate the generalization capa-
bility, we choose the validation split of real-world dataset
Cityscapes [22] which is unseen during training. Cityscapes
is a semantic segmentation dataset collected in street scenar-
ios, which contains a training set with 2975 images and a vali-
dation set with 500 images. The images are annotated into 19
classes. We only utilize the validation set to test the perfor-
mance of our model for comparison with other approaches.
Implementation Details: Our Network is implemented in
PyTorch and runs on a single NVIDIA RTX2080Ti GPU.
For the training set in GTA5, we resize the input image to
640×640 with random cropping and flipping. For the testing
set in Cityscapes, the images are simply resized to 1024×512.
Model is trained for 20 epochs without using pre-trained pa-
rameters. In the training period, we choose Stochastic Gradi-
ent Descent (SGD) optimizer with a learning rate of 2.5e-4,
a momentum of 0.9, a weight decay of 0.0005, and a batch
size of 1. For comparison with prior work on domain gener-
alization, we utilize ResNet-50 as the backbone. We choose
PASCAL VOC Intersection over Union (IoU) as the evalua-
tion metric for testing. mIoU is the mean value of IoUs across
all categories.
4.2. Comparison with State-of-the-Art

We compare our method with recent state-of-the-art domain
generalization methods, which include IBN-Net [2], DRPC

Table 3: The effect of hyper-parameter λ, which is designed
to trade off the quality of segmentation loss and boundary
loss.

Network mIoU % mIoU↑ %
baseline 26.21 -
λ =1.00 32.68 6.47 ↑
λ =1.25 33.43 7.22 ↑
λ =1.50 34.24 8.03 ↑
λ =1.75 33.34 7.13 ↑
λ =2.00 32.59 6.38 ↑

[19], CSG [20], RobustNet [21], and Peng et al. [3]. All meth-
ods are trained using the synthetic dataset GTA5 and then
test on the validation set of the real-world dataset Cityscapes.
Some of these methods involve complex pre-processing, such
as adversarial generation and image randomization, while
others do not utilize pre-processing. In order to verify the
effectiveness of our method to the greatest extent, we set
the batch size to 1 without pre-trained parameters during the
training. Table 1 shows the quantitative results of seman-
tic segmentation accuracy mIoU from GTA5 to Cityscapes.
Baseline is trained by GTA5 using network ResNet-50 only.
Our proposed method improves by 8.03% on mIoU compared
to the benchmark network. We can observe our method out-
performs the other methods when there is no pre-processing
used, like IBN-Net and RobustNet. Moreover, our method
also achieves a competitive result compared to the state-of-
the-art method with pre-processing.

4.3. Ablation Studies

To further assess the the significance of each component in
our proposed approach, we conduct different types of ablation
studies. We first verify the the effectiveness of designed two
modules: Texture Structure Generalizer and Spatial Struc-



ture Intensifier. Table 2 shows the mIoU improvement by
adding our designed modules. When the TSG or SSI module
is adopted alone, mIoU is improved from 26.21 to 31.72 and
26.21 to 32.23, respectively. When two modules are added
simultaneously, the mIoU achieves 34.24. These results show
that taking two proposed modules is beneficial to generaliza-
tion performance. Meanwhile, we also visualize the segmen-
tation results, including the results of baseline, single mod-
ule network, and the entire network. As shown in Fig.4, we
use the orange box to mark the difference of segmentation re-
sults after adding TSG and SSI modules. Better results can
be achieved when using two modules at the same time, such
as the segmentation of traffic signs, vehicles, and pedestrians.
Especially in the fourth line of Fig.4, the segmentation of the
traffic sign and the bus combined with TSG and SSI is better
than that of a single module. In addition, there is a signifi-
cant hyper-parameter λ in equation 5 to trade off the quality
of boundary loss with segmentation loss. To evaluate the in-
fluence of λ on our model, we set λ from 1.00 to 2.00. As
shown in Table 3, we can observe that when λ = 1.5, our
method achieves the best performance.

5. CONCLUSION

In this paper, we have presented a simple, efficient, and no-
preprocessing network of domain generalization for semantic
segmentation. The internal structure of the synthetic image
has been exploited to enhance the generalization capability
of the network. To relieve the reliance of network classifi-
cation on texture, we proposed a Texture Structure General-
izer (TSG) module. In addition, Spatial Structure Intensifier
(SSI) is designed to enhance the segmentation capability of
the network through learning spatial knowledge. These two
proposed modules can be flexibly inserted among feature ex-
traction layers in the network by adjacent layer and cross-
layer. Experimental results on the Cityscapes dataset have
confirmed the superiority of our method over prior methods.

Acknowledgement
This work was supported by the National Natural Science
Foundation of China under Grant no. 62072327, and TSTC
under Grant no. 20JCQNJC01510.

6. REFERENCES

[1] Y. Li, L. Yuan, and N. Vasconcelos, “Bidirectional learning for
domain adaptation of semantic segmentation,” in CVPR, 2019.

[2] X. Pan, P. Luo, J. Shi, and X. Tang, “Two at once: Enhancing
learning and generalization capacities via ibn-net,” in ECCV,
2018.

[3] D. Peng, Y. Lei, L. Liu, P. Zhang, and J. Liu, “Global and local
texture randomization for synthetic-to-real semantic segmenta-
tion,” IEEE TIP, vol. 30, pp. 6594–6608, 2021.

[4] J. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-
image translation using cycle-consistent adversarial networks,”
in ICCV, 2017.

[5] X. Huang and S. J. Belongie, “Arbitrary style transfer in real-
time with adaptive instance normalization,” in ICCV, 2017.

[6] K. Zhou, Y. Yang, T. M. Hospedales, and T. Xiang, “Deep
domain-adversarial image generation for domain generalisa-
tion,” in AAAI, 2020.

[7] Y. Li, M. Gong, X. Tian, T. Liu, and D. Tao, “Domain gen-
eralization via conditional invariant representations,” in AAAI,
2018.

[8] B. Geng, D. Tao, and C. Xu, “Daml: Domain adaptation metric
learning,” IEEE TIP, vol. 20, pp. 2980–2989, 2011.

[9] M. Long, Y. Cao, J. Wang, and M. I. Jordan, “Learning trans-
ferable features with deep adaptation networks,” in ICML,
2015.

[10] T. Vu, H. Jain, M. Bucher, M. Cord, and P. Pérez, “Advent:
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