SOFT CLUSTERING GUIDED IMAGE SMOOTHING
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ABSTRACT

Image smoothing, which aims to remove unwanted textures
and preserve desired structures, plays an important role in
many multimedia and computer vision tasks. The key to im-
age smoothing, despite different applications, is to distinguish
the structures from the textures. This paper presents a novel
image smoothing method, following the principle that, for a
certain pixel, its neighbors in both space and intensity should
contribute more on smoothing, while the distant ones be in-
sulated for avoiding over-smoothing. Intuitively, clustering
is a good candidate to achieve the goal. However, due to
rich textures and clutters within images, simply performing
the clustering on the input likely obtains inaccurate results,
and thus leads to unsatisfied smoothing results. In addition,
for our task, using traditional hard clustering techniques is
at high risk of generating staircase artifacts. For addressing
these issues, an algorithm is customized, which on the one
hand adopts the soft clustering to more faithfully assign pix-
els, on the other hand iterates the soft clustering and smooth-
ing, expecting to improve each other. Experiments on several
challenging images are provided to show the efficacy of our
method, and its superiority over other prevailing approaches.

Index Terms— Image smoothing, texture removal, edge-
preserving, soft clustering

1. INTRODUCTION

Edge-preserving image smoothing is of critical importance
to a great deal of multimedia, computer vision and graphics
tasks, which attempts to smooth away textures whilst retain-
ing sharp edges in images. Considering many scene prop-
erties, e.g. depth, color, object category and matte, are cor-
related within smooth regions of an image while differing
across discontinuities in the image, it is common to smooth
a rough property map (also known as the filter input) without
crossing strong edges. For example, in texture enhancement,
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Fig. 1: (a) Input. (b) Result by GIF [1]. (c) and (d) Itera-
tively refined hard clustering (SLIC superpixel [2]) map and
corresponding result. (e) and (f) Direct soft clustering map
and corresponding result. (g) and (h) Iteratively refined soft
clustering map and corresponding result.

the core mission is to separate structural edges and textures
from an input image (under the circumstances, the input it-
self acts as the rough map), and then magnify the textures
to accomplish the task; in image colorization [3], the rough
map is the user-scribble map and the reference is the orig-
inal gray-scale image; in image dehazing [4], the transmis-
sion map obtained by drak-channel-prior and the foggy im-
age server as these two image; in joint upsampling [5, 6], the
low-resolution output and the high-resolution image are rough
map and reference image respectively. Although for different



applications, the goals are diverse, their performance unan-
imously depends on how well the structures to preserve are
distinguished from the textures to eliminate.

1.1. Related Work

As aforementioned, image smoothing are usually a prepro-
cessing in many applications [7, 8, 9, 10, 11]. Over the past
decades, many image smoothing approaches have been devel-
oped. Among others, linear translation-invariant filters using
explicitly designed kernels, i.e. the Gaussian and Laplacian
kernels, are arguably the most efficient ones. But these spatial
invariant kernels cannot effectively distinguish the structures
and textures, and thus result in poor results in practice.

Certainly, it is beneficial if having some guidance infor-
mation. In this paper, we call the smoothers that require guid-
ance information the guided smoothers (or guided filters). In
addition, we name the smoothers using a single input itself
as guidance, as the self-guided smoother. As a classical self-
guided smoother, the bilateral filter (BF) [12] is able to main-
tain strong edges while removing weak textures, via handling
a target pixel through averaging its neighbors, which is de-
fined either by pixel grid or by superpixel grid [13]. The im-
portance of the neighbors is measured by the Gaussian of both
spatial and intensity distances. But BF often suffers from gra-
dient reversal artifacts.

To mitigate this kind of artifact, the gradient has been
employed as guidance. It is intuitive to do so as the pixels
with larger gradient magnitudes have higher possibilities of
being on the structural edges, and vice versa. A representa-
tive work in this category is the weighted least squares [14],
which shows the superiority over the total variation minimiza-
tion method [15]. To further boost the performance, Xu et al.
employed the L regularizer, expecting to form hard weights,
to enhance the sparsity of gradients [16]. Rolling guidance
filter, recently proposed by Zhang et al. [17], alternatively
recalls the strong edges from the previously smoothed result,
inspired by the scale-space theory. Though RGF is efficient,
its ability is limited by its inaccurate edge localization.

If another image, instead of the input, can provide use-
ful information, the structural details in the reference image
can be regarded as a prior and transferred to the target output
during filtering. It is natural to adopt such information to act
as guidance. We call this kind of methods the joint guided
smoothers (or joint guided filters). The joint bilateral filter
[18] computes the weights from the reference rather than the
filtered image. Even though, the problem of gradient reverse
artifacts still remains. He ef al. proposed an approach, called
guided image filter (GIF) [1]. GIF is locally a linear trans-
form of the guidance image, which has proven the flexibility
and the effectiveness in coping with a bunch of tasks, such as
HDR compression, image matting, and dehazing. But GIF ex-
poses its shortcoming of producing halo artifacts near edges.

1.2. Contribution

Image smoothing heavily depends on how well the structures
are distinguished from the textures. Figure 1 (a) gives an ex-
ample natural image. This work tries to, for a certain pixel,
find the neighbors in both space and intensity, to contribute on
smoothing, in a clustering manner. But, applying traditional
hard clustering (SLIC [2] for example) on the image intro-
duces heavy staircase artifacts into results, as shown in Fig. 1
(c) and (d). To more faithfully assign neighbors, we employ
a soft clustering scheme. However, due to rich textures and
clutters within the image, directly performing the soft clus-
tering on the input leads to inaccurate clustering results, like
in Fig. 1 (e). The smoothing result using such a low-quality
clustering map is barely satisfied, as shown in Fig. 1 (f). To
fix this problem, we iteratively alternate the clustering and
smoothing, and can obtain significant better results as shown
in Fig. 1 (g) and (h). In experiments, we will compare with
other state-of-the-art methods on a number of challenging im-
ages to reveal the advances of our design.

2. OUR METHOD

This section first revisits and analyzes the guided image filter
(GIF) [1]. Based on the analysis, we then explain our method
in details to see how and why it can improve GIF on the task
of image smoothing.

2.1. Guided Filter Revisit

Given a reference image R € R™*™, where m and n repre-
sent the height and width of the image, respectively. The key
assumption of the guided image filter is a local linear model
between R and the filter output Y € R™*™. For the sake

of clarity, we first define the neighboring matrix S € RE*K
(K = m x n) as follows:
. 1, ] € w;
Sij = { 0 , otherwise ’ M

where ¢, j are pixel indices and w; is a local window centered
at 7. In fact, S is a highly sparse matrix as, in the ith row of
S, only the entries that indexed by pixel j € w; are 1. Having
S defined, the local linearity can be formulated as:

where a; and b, are linear coefficients assumed to be con-
stant in local window wy,. In addition, y and r are vectorized
versions of Y and R, respectively. Sy is the kth row of S,
Diag(-) is a math operator that returns a square diagonal ma-
trix with the elements of a given vector. To obtain a and by,
GIF minimizes the difference between y and the filter input x
by optimizing the following cost function:

E(ay,by) = ||ay, - Diag(Sk) - r + by — Diag(Sy)x||* + eaf,
3)



where ea} is to prevent ay from over-large values. As can
be seen from Eq. (3), it is a classic Weighted Least Square
(WLS) problem, the solution of which can be obtained by:

2\T (1 0 %) — T\
o = S ;C) TR% @
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br = Xg — al, %)
where S? stands for element-wise square of S, and the op-
erator o designates the Hadamard product, T, = (S%)Tr,
%, = (S?)"x, 02 = (S?)"(r? — 7?). By solving Eq.
(3) for each k € {1,2,---, K}, we obtain stacked vectors
a € REX! of g, and b € RE*1 of b, for each wy. The
coefficients for each pixel are calculated by averaging all the
windows containing a specified pixel as follows:

= STa/ST-1

— STb/ST 1" ©

o o

where 1 is an all-one vector with compatible size. The filter
output of GIF turns outtobe y = aor + b.

Actually, GIF assumes that a single linear model between
the guidance image and filter output in a local window. Con-
sider the case where r = x. In this case, ar, = 07/(07 + €)
in Eq. (4). Suppose pixel ¢ lies in a strong edge in R and
the gradient is expected to be maintained in the output, i.e.
Vy; ~ Vr;. When a local window wy, contains pixel ¢
as well as the whole edge. This means rj has a high vari-
ance, i.e. we have a,f > e. Consequently, ar ~ 1 and
Vy; = apVr; = Vr;. On the contrary , when another lo-
cal window w,, also contains pixel ¢ but only a small portion
of the edge, and appears to be mostly flat, which means that
r, is of low variance, then we have ai < €. Soa, ~ 0and
Vy; = a,Vr; = 0. The final a; is obtained by averaging ay,
and a,,, which will decrease the original gradient Vr;. By set-
ting a small window can reduce the gradient decrease to some
extent, but weak textures will also be preserved. In summary,
due to the averaging process in Eq. (6), the gradient magni-
tude in output corresponding to strong edges in guidance is
weakened. We show a simple 1D illustration in Fig. 2.

This magnitude decrease lies in the linear assumption be-
tween guidance and output in local patches. Suppose a patch
contains very bright pixels and very dark pixels separated by
an edge, the relationship between input and output may be
very different on either side of that edge. A linear model
on the “high variance” patch cannot capture this difference.
Thus, to preserve the gradient magnitude, we can fit a sepa-
rated linear model to each intensity range present in a patch.
A similar approach is used by Chen [5] to map input images
to the output of a large range of non-linear operators.

2.2. Soft Clustering Guided Image Smoothing

Compared to GIF, where each row of S actually is a cluster
of all pixels’ indices in a local window, we can rebuild S to

Guided filter N
Our method P

e ——

Fig. 2: 1D illustration of the decrease of the gradient using
GIF and our method. The gradient of an edge is averaged by
the surrounding smooth local patch.

group pixels of different intensity ranges to different rows and
solve the corresponding aj, and by,. The main functionality of
S is to aggregate pixels that have both similar spatial positions
and intensity ranges. To this end, a straightforward idea is ap-
plying hard clustering techniques. However, the hard manner
will inevitably introduce artifacts around the boundaries be-
tween clusters. Figure 1 (c) and (d) reveal the artifacts, which
employs the SLIC superpixel [2] as the clustering tool.

In the sequel, we alternatively resort to soft clustering to
mitigate this issue. As a soft clustering algorithm, permuto-
hedral lattice [19] is first proposed to accelerate bilateral fil-
tering. Filtering with permutohedral lattice works by “splat-
ting” a value at each pixel onto a set of high-dimensional ver-
tices, performing a blur in the space of vertices, and “slic-
ing” out values at each pixel to get a filtered set of val-
ues. Typically, the value at pixel ¢ is a 5-dimensional vec-
tor U; = (x4,¥:,7i,9:,bi), where (x;,y;) is the spatial
coordinate and (r;, g;, b;) is the channel-wise intensity. In
fact, the vertices in high-dimension is an weighted aggre-
gation of pixels with similar intensities and positions. The
vertices in permutohedral lattice are arranged as tetrahedral
and the weights are calculated using barycentric interpola-
tion. Suppose the whole 5-dimensional space is tessellated
into K? vertices V. = {v1,---,vk»r} using permutohedral
lattice representation, and U falls into the tetrahedral con-
structed by vertices set T; = {Ui{’ e ,vig} C V, where

1]16 € {1,2,--- ,KP} are indices of coordinate of 6
vertices of the tetrahedral in 5-dimensional space, we use
bi,--- , b} to denote the barycentric coordinates of Uj, i.e.
uU; =%, blvy and S2°_, b3 = 1. Then j® column of
the neighboring matrix based on PL method are constructed
by putting b/ to #i row, i.e. S5, = bl. According to [20],
S is the so called splatting matrix and the transpose of it ST
is slicing matrix. In each column of S, there are 6 non-zero
entries which correspond to the weights of vertices in a 5-
dimensional tetrahedral. As sparse matrices, the main func-
tionality of S is to aggregate pixels that have both similar



spatial positions and range intensities. Each row of S cor-
responds a vertex in bilateral space and only the pixels that
belong to the vertex are non-zero entries.

Using the direct soft clustering result to guide the smooth-
ing is inadequate to generate satisfactory results, as shown in
Fig. 1 (e) and (f), because the clustering accuracy is affected
by rich textures and clutters. To fix this problem, we propose
to iteratively perform soft clustering and smoothing to obtain
significantly better results, as shown in Fig. 1 (g) and (h).

Analysis on S. The neighboring matrix created by GIF
does not take intensity difference between pixels in guidance
when averaging linear coefficients using Eq. (6). In fact, by
interpreting ST as a similarity matrix of different pixels’ az,
and by, Eq. (6) is also a filtering process. An isotropic fil-
tering, either by box filtering or by gaussian filter proposed
in [1], will unsharpen the coefficients of edges. By assum-
ing a separated linear model to different intensity ranges, we
actually add a structural prior in the “filtering” process pre-
sented by Eq. (6). We show the structural information coded
in S in Fig. 1 (e) and (g), where each row of the neighboring
matrix is assigned a random color and each color in this vi-
sualization corresponds to a coefficient pair need to solve. It
is clearly that the coefficients is edge-aware in our algorithm.
The price of obtaining edge-aware coefficients is changing the
linear filtering in Eq. (6) to a non-linear one. As mentioned in
[1], Eq. (6) can be implemented by a simple box filter or gaus-
sian filer. Instead, in our algorithm, this process is dependant
on the construction of S.

Relationship to Bilateral Guided Filtering. In [5], the
authors also proposed to fit a separated linear model to dif-
ferent intensity ranges for mapping the input color to the out-
put of an operator. It enforces both spatial and intensity con-
straints on the linear coefficients in bilateral grid. It solves
a global minimization to compute the coefficients for each
pixel. Instead, we explicitly model the relationship between
the coefficients in different “vertices” in S.

3. EXPERIMENTS

As an important feature, our algorithm can preserve the
distinguished structure while removing weak textures when
smoothing. In the first experiment, we show some smooth-
ing results of our algorithm as well as the state-of-the-art
ones in Fig. 3 to demonstrate the effectiveness of our algo-
rithm. To make the comparison fair, we adopt smoothing level
[23], which is the normalized difference between filter input
and output and can be formally defined as ||x — y/||5 / ||y,
We tune the parameter(s) for each method to reach a similar
smoothing level (~ 0.1). In Fig. 3(a) and (b), we show that
our algorithm can preserve the details marked in green box
while smoothing out the other non-significant textures. We
observe GIF [1] can not preserve the edges well when intend-
ing to smooth out large texture regions (background in Fig.
3(a) and body of donkey in Fig. 3(b)). To achieve the same

#7: 0.1236

Fig. 4: Illustration of the iterative soft clustering and smooth-
ing process. Small structures boxed by blue rectangle are not
smoothes during iteration while the texture in green is pro-
gressively smoothed out during iteration. Iteration number
and smoothing level are labeled on bottom.

smoothing level as our algorithm, no algorithm can preserve
the small structures in green rectangles well. Note that, in Fig.
3(b), although LO [16] maintains the hair in donkey, the weak
textures in the body also preserved. Most other algorithms
can not preserve this thin structure well when smoothing.

In Fig. 3(c), the input image is a heavily degraded im-
age due to the JPEG compression artifacts (quality factor is
5). Our algorithm can be used to smooth out these blocky
artifacts while preserving notable small structures which are
also boxed in green rectangles. RGF [17] preserve the small
structures, but there is an edge-shifting effect (edge is not lo-
calized correctly) in the result. Though the smooth level of
muGIF [23] is higher than us, the blocks is not smoothed out.

As described in Sec. 2.2, the iterative process of soft
clustering and smoothing is important to our algorithm. To
demonstrate this, we show the intermediate smoothing results
of Fig. 1(a) in Fig. 4. In the green rectangle region in Fig 4,
there contains only weak textures while in the blue rectangle
region, the stamen of the flower of a small thin structure. Our
algorithm can iteratively smooth green rectangle region while
preserving the structure in blue rectangle region. As the iter-
ation going on, more and more weak textures are smoothed
out while the distinguished structures are preserved.

We apply our algorithm on retouching face photos, in
which we need to smooth skin while preserving small struc-
tures like eyelash, eyebrow etc.. In Fig. 5 we show an exam-
ple of this application. The freckles on the face of women is
removed while the eyelash is preserved.

We have also test our algorithm on depth recovery. Given
a low resolution noisy depth map as input, we use the self-
guided manner to recovery the high resolution one. Figure 6
shows the result, where we use an noisy depth map of down
sample factor 8 to recover the original one. We first upsample
the map using bicubic interpolation and then smooth it with
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Fig. 3: Visual comparison, with the difference value defined as ||x — y||, / ||y ||, labeled on bottom.




(a) Groundtruth  (b) Bicubic as input

(c) Result
Fig. 6: Depth recovery using using our algorithm.

itself as the guidance. As a baseline, MAD of bicubic inter-
polation is 4.47 and our algorithm achieves 2.10. which is
comparable with the state-of-the-art one.

4. CONCLUSION

In this work, we have proposed a novel image smoothing
method. The key principle is that the neighbors in both space
and intensity of a pixel should contribute more on smoothing,
while the distant ones should be insulated for preventing from
over-smoothing. Intuitively, clustering is a good candidate to
achieve the goal. We have empirically proven that, because of
rich textures and clutters within images, simply performing
the clustering on the input cannot generate satisfied results.
In addition, using traditional hard clustering techniques is at
high risk of generating staircase artifacts. To mitigate these
issues, an algorithm has been customized, which on the one
hand adopts the soft clustering to more faithfully assign pix-
els, on the other hand iterates the soft clustering and smooth-
ing. Experimental results have been provided in comparison
with the SOTA alternatives to demonstrate the advantages of
our method. In the future, we intend to improve our approach
by extending the ways of building neighboring matrix.
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