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Abstract
Optical coherence tomography (OCT) is a promising non-invasive imaging technique that owns
many biomedical applications. In this paper, a deep neural network is proposed for enhancing the
spatial resolution ofOCT en face images. Different from the previous reports, the proposed can
recover high-resolution en face images from low-resolution en face images at arbitrary imaging depth.
This kind of imaging depth adaptive resolution enhancement is achieved through an external
attentionmechanism, which takes advantage ofmorphological similarity between the arbitrary-depth
and full-depth en face images. Firstly, the deep featuremaps are extracted by a feature extraction
network from the arbitrary-depth and full-depth en face images. Secondly, themorphological
similarity between the deep featuremaps is extracted and utilized to emphasize the features strongly
correlated to the vessel structures by using the external attention network. Finally, the SR image is
recovered from the enhanced featuremap through an up-sampling network. The proposed network is
tested on a clinical skinOCTdata set and an open-access retinal OCTdataset. The results show that
the proposed external attentionmechanism can suppress invalid features and enhance significant
features in our tasks. For all tests, the proposed SRnetwork outperformed the traditional image
interpolationmethod, e.g. bi-cubicmethod, and the state-of-the-art image super-resolution
networks, e.g. enhanced deep super-resolution network, residual channel attention network, and
second-order attention network. The proposedmethodmay increase the quantitative clinical
assessment ofmicro-vascular diseases which is limited byOCT imaging device resolution.

1. Introduction

As a non-invasive imaging technique, optical coherence tomography (OCT) has gainedmuch attention in the
last decade. OCTuses near-infrared light to detect the luminous reflection coefficient of bio-tissues, and
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achieved 2–3 mmpenetration depth and 10–40 μmspatial resolution, which is efficient for diagnosing (Tao et al
2017, Bekkers et al 2020), tumor angiogenesis (Kikuchi et al 2019, Liu et al 2020), and skin disease (Liu and
Drexler 2019,Meiburger et al 2019), etc.

Resolution ofOCT can bemainly divided into axial and lateral resolutions. Axial resolution is defined as the
distinguish-ability of two nearest objects along the direction of the incident light, whichmainly depends on the
wavelength. Lateral resolution is defined as the distinguishability along the direction perpendicular to incident
light, which primarily depends on themagnification of the imaging objective (Bizheva et al 2017). To improve
the spatial resolution ofOCT,manymethods have been proposed. Thesemethods can bemainly divided into
hardware-based and digital-basedmethods. The hardware-basedmethods, e.g. adding an axon lens to the
sample armof the interferometer (Ding et al 2002) or using liquid-filled polymer lenses in the endoscopic system
(Divetia et al 2005), improved spatial resolutionwith additional hardware, thus is cost-intensive and
implemented complexly. The digital-basedmethods, e.g. using themodified Bayesian residual transform (Tan
et al 2018) or the projection-resolved optical coherence tomography angiography (OCTA) (Wang et al 2017),
utilized digital signal processing to enhance spatial resolution, thus is low cost and implemented easily.

Image super-resolution (SR) (Yang et al 2008) is another efficientmethod for resolution enhancement. SR
method recovers high-resolution (HR) images from low-resolution (LR) ones by using theirmorphological
characteristics, and is widely studied andwell-established in the field of computer vision. The traditional SR
methods enhance the image resolution by using the intrinsicmorphological and structural information through
a sparse-coding-basedway. They are normally theoretically well-proved, but have limited speed and accuracy. In
the last few years, convolutional neural networks (CNN) based super-resolutionmethods have gainedmuch
attention. The related reports showed that theCNN-basedmethods significantly outperform the traditional
neural networks in simulation and natural environments. In 2016,Dong et al (2016) applied CNN to super-
resolution reconstruction of images to establish an end-to-endmapping relationship between LR andHR
images. Later, Kim et al (2016) utilized residual and recursivemodules in their network to improve SR
performance. In 2017, Lim et al (2017) proposed an enhanced deep super-resolution (EDSR)network, which
enhanced featureflowing in local residualmodules of deep neural network by removing batch normalization
layers. Ledig et al (2017)up-scaled LR features with a sub-pixel layer which has been provedmore effective than
the traditional transposed convolution layer. In 2018, Zhang et al (2018) proposed a residual dense networkwith
continuous and global residual structures tomake full use of shallow feature information. Later, they further
presented an enhanced deep super-resolution network, namedRCAN, to incorporate channel attention in
residual densemodules (Zhang et al 2018). In 2019,Dai et al (2019) proposed a normalization-based second-
order attention network named as SAN for SR tasks and achieved state-of-the-art performance.

SRmethod has also attractedmuch attention inmedical image analysis. In 2018,Wang et al (2018) exploited
a generative adversarial network-basedmethod to achieve SR across differentfluorescencemicroscopy
modalities. Lok et al (2021)used a fully convolutional neural network to achieve fast super-resolution
ultrasoundmicrovessel imaging. Liu et al (2019)proposed a deep learning-based SRpipeline forOCTA,which
has a higher signal-to-noise ratio and shows potential in clinical use. Park et al (2018) present a semi-supervised
deep learning approach to recoverHR coherence tomography images fromLR counterparts accurately. Shi et al
(2018) proposed a novel residual learning-based SR algorithm formagnetic resonance imaging, which combines
bothmulti-scale global residual learning and shallownetwork block-based local residual learning.

The SRmethods forOCT image enhancement can be divided into the B-scan image-based and en face
image-basedmethods. The B-scan image-basedmethods aim to enhance the resolution of the B-scan image of
OCT. Fang et al (2013)proposed sparsity-based simultaneous denoising and interpolation to create high-quality
B-scan using fewer A-scans. Das et al (2020) proposed a generative adversarial network-based framework to
perform fast and reliable SR forOCTB-scan images. Qiu et al (2020) exploit U-net to obtain high signal-to-noise
ratio andHRB-scan imageswithin a short scanning time fromnoisy and low-resolution B-scan images. The en
face image-basedmethods aim to enhance the resolution of en face image ofOCT. As a commonly used
visualizationmethod in both research and clinical scenarios, en face image, which projects a 3DOCT image into
2D along its incident light direction, is helpful for qualitative or quantitative assessments of the retinalmicro-
vasculature (Jia et al 2015, Chu et al 2016, Fard et al 2018). As a result, the SR results of en face images aremore
intuitionist than these of B-scan images, by considering that themorphological characteristics aremore
significant in en face images than in B-scan images. Zhou et al (2020) used a recurrent generative adversarial
network to enhance the resolution of images collected fromanOCTAdevice with 8× 8 mm receptive field. The
results proved that the enhanced images are comparable to the images collected from a device with 3× 3 mm
receptive field. Gao et al (2020) usedCNN to improve the image quality ofOCTA en face image. Comparedwith
raw images, the enhanced images have lower noise intensity, stronger contrast, and better vascular connectivity.
Jalili et al (2020) exploit a curvelet-basedmethod to combine detailed information of a set of en face images to
construct high-quality en face image. Although there are already some reports on using SRmethod to enhance
OCT en face images, they all focus on improving the spatial resolution of en face imageswith a specific imaging
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depth. Resolution enchantment for en face imagewith arbitrary imaging depth is helpful for enriching
information for both research and clinical studies (Nanji et al 2020).

In this paper, an imaging depth adaptivemethod is proposed for improving spatial resolution ofOCT en face
images. Different from the previous reports, ourmethod can reconstructHR en face images fromLR en face
images at arbitrary imaging depth by using the full-depth en face images (projection along the entire imaging
depth) as a guidance. The proposedmethod is implementedwith a deep learning frameworkwith an external
attentionmechanism. Firstly, two-channel weights shared feature extraction networks are designed to extract
the deep featuremaps of both arbitrary-depth and full-depth LR en face images. Secondly, an external attention
map is calculated from these two featuremaps according to theirmorphological similarities. Thirdly, the
attentionmap is used to enhance the featuremap of the arbitrary-depth image through amultiplication
operation. Finally, the SR image is recovered from the enhanced featuremap through an up-sampling network.
The proposedmethod is tested on a clinical skinOCTAdata set and a public retinal OCTdata set and compared
with the traditional image interpolationmethod, e.g. bi-cubic interpolation, and the state-of-the-art SR
networks, e.g. EDSR, RCAN, and SAN.

2.Methodology

2.1. Network overview
As shown infigure 1, to generate an en face image, one needs to accumulate a 3DOCTorOCTA image in z-
direction. For an en face imagewith imaging depth k, one has

å=
=

 I i j X i j t k K, , , , for 1 , 1k

t

k

1

( ) ( ) ( )

where Ik is the en face image,X is a n× n× KOCTorOCTA image, andK is the total number of pixels along z-
direction.Our target is to estimatedHR en face image I kH fromLR en face image I kL at arbitrary imaging depth
1� k� K. During the estimation, the full-depth en face image I KL is used as a guidance. The proposedmethod
mainly consists of two feature extractionmodules with sharedweights, one external attentionmodule, and one
up-samplingmodule. The feature extractionmodule contains two branches with sharedweights for extracting
deep features from arbitrary- and full-depth en face images, IL

k and IL
K. The external attentionmodule fuses two

deep channel features and emphasizes the vessel structure in the featuremaps. The up-samplingmodule
recovers the SR image fromdeep learned features.

2.2. Feature extraction block
The feature extractionmodule consists of a convolution layer followed by several sequential residual attention in
residual dense blocks (RARDBs) and two additional convolution layers, as shown in figure 1. The entire feature
extractionmodule could be formalized by

= ¼´ h C o o o, , , , 2k
D1 1 0 1◦ ◦ ( ) ( )

where  and ´1 1 denote convolution operations of convolution layers with 3× 3 and 1× 1 kernels,
respectively,C denotes concatenation operation, and o represents the input/output featuremaps of RARDBs.

Figure 1.Network architecture of proposed super-resolution networkwith external attentionmechanism.
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2.2.1. RARDB
As shown infigure 1, the RARDBblock consists of spatial attention, channel attention, convolution layers, and
residual densemodules. The spatial attention and channel attentionmodules aim to emphasize the features
which aremore helpful for our task. Several sequential residual dense units construct the residual dense
modules. The residual dense unit was proposed byZhang et al (2018). Being different from the residual block
which has been used in high-performance SR (Kim et al 2016, Lim et al 2017, Tai et al 2017), the residual dense
unit has the advantage ofmaking full use of shallow and deep features. The local skip connection is used to
reduce the information distillation during the feature refining. Following figure 1, for initial input = o IL

k
0 ( ),

the featureflow in the RARDBs can be formulized as

= + ++    o o o o , 3d d d d1 ◦ ( ) ◦ ( ) ( )

where  denotes residual densemodule,  and  denote the spatial and channel attention units, respectively.

2.2.2. Spatial attentionmechanisms
Spatial attentionmodule produces spatial-wise attention by utilizing the inter-spatial relationship of features
(Woo et al 2018) and is widely used in SR (Chen et al 2021), object classification (Zhu et al 2021). For a given
featuremap Î ´ ´x h w p carrying h× w-dimensional spatial information and p-dimensional channel
information, the spatial attention unit uses the first-order statistics for feature enhancement in spatial space. The
spatial attention unit is formulated as

a b= = ´ y x x S C , , 4s s1 1( ) ◦ ◦ ( ) ( )

whereedenotes element-wise product, S denotes the sigmoid function, a Î ´s
h w and b Î ´s

h w are averaged
andmaximized featuremaps in spatial space, respectively. Here,αs andβs are implemented bymaximum
pooling and average pooling in spatial dimensions, respectively. They are formulated as

åa =
=

i j
p

x i j k,
1

, , , 5s
k

p

1

( ) ( ( )) ( )

b =i j x i j, max , , : . 6s( ) ( ( )) ( )

The sigmoid function S in (4) ismainly used as a gating operator for incorporating nonlinearity andmutual
exclusivity into our feature extraction network. It can efficiently emphasize useful features and suppress invalid
features.

2.2.3. Channel attentionmechanisms
Channel attentionmodule generates channel-wise attentionmaps, which have been proved efficient on image
captioning (Chen et al 2017), fusion (Li et al 2020), and segmentation (Lee et al 2020). The channel attention unit
uses thefirst-order statistics for feature enhancement in channel space. Similar to spatial attention, the channel
attention unit is formulated as

a b= +´


´ ´


´   y x S , 7c c1 1 1 1 1 1 1 1( ◦ ( ) ◦ ( )) ( )

where ´
1 1 is a convolution operation re-scale the featuremap from0.25× p to p, a Î c

p and b Î c
p are

averaged andmaximized featuremaps in channel space, respectively. Theαs andβs are implemented by
maximumpooling and average pooling in channel dimensions, respectively. They are formulated as

ååa =
= =

k
hw

x i j k
1

, , , 8c
i

h

j

w

1 1

( ) ( ( )) ( )

b =k x kmax max :, :, . 9c ( ) ( ( ( ))) ( )

2.3. External attention bock
The external attention block’s primary purpose is to utilize deep featuremaps extracted from the full-depth en
face image to enhance vessel structure information in the deep featuremaps extracted from the arbitrary-depth
en face image. As shown infigure 2, the feature fusion block consists of a spatial-external attention block
followed by a channel-external attention block. The entire feature fusion block can be formulated by

= +  y x x x x, , 10ea i e
c s

i e◦ ( ) ( )

where Î ´ ´xi h w p and Î ´ ´xe h w p are the internal and external featuremaps, respectively,
´ ´ ´ ´ ´ ´  :s h w p h w p2 2 and ´ ´ ´ ´ ´  :c

h w p h w p2  denote the spatial-external attention and channel-
external attention blocks, respectively. Inspired by spatial attention and channel attention, spatial-external
attention and channel-external attention also use themaximumpooling and average pooling operators to
enhance the spatial and channel features, which aremore efficient on our SR task.Unlike spatial attention and
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channel attention, the feature enhancement in spatial-external attention and channel-external attention focused
on the structural similarities between the superficial image I kL and the full-depth image I KL , resulting in an
external supervisionmechanism for the superficial image SR task.

2.3.1. Spatial-external attention
Figure 2 shows the construction of the spatial-external attention block. The spatial-external attention block
mainly consists of two-channel attention units with sharedwights, followed by a point element-wise product
and sigmoid activation. Firstly, for a given internal deep featuremap x i, two channel-independent featuremaps
as

i and b s
i are extracted by using average- andmax-pooling, respectively. Secondly, these two featuremaps are

concatenated together and fused into a h× w featuremap g s
i through a convolution layer. Thirdly, following the

same procedure, the external featuremap g s
e is generated. Fourthly, g s

i and g s
e are element-wise produced to

extract vessel-dependent attentionmaps. Finally, the vessel enhanced featuremaps y i and y e are calculated by
multiplying the spatial-wise attentionmapwith x i and x e, respectively. The entire spatial-external attention
block can be formulated as

g g= =
y

y
x x x

x
S, 11

i

e s
i e

i

e s
i

s
e⎡

⎣⎢
⎤
⎦⎥

⎡
⎣

⎤
⎦

( ) ◦ ( ) ( ) 

where sigmoid function S is used to incorporate nonlinearity andmutual exclusivity into our external attention
module, and the spatial-wise enhanced deep featuremaps g Î ´s

i h w and g Î ´s
e h w are defined as

g a b= ´ C , , 12s
i

s
i

s
i

1 1 ◦ ( ) ( )

g a b= ´ C , . 13s
e

s
e

s
e

1 1 ◦ ( ) ( )

with a b,s
i

s
i{ }and a b,s

e
s
e{ }calculated by (5) and (6).

2.3.2. Channel-external attention
Figure 2 shows the construction of the channel-external attention block. The channel-external attention block
mainly consists of two-channel attention units with sharedwights, followed by a point element-wise product
and sigmoid activation. Firstly, we use average- andmax-pooling to generate channel descriptorsαc andβc of
length p, which contain global spatial information from spatial-external attention output y i. Secondly, we also
introduce a gatingmechanism to squeeze and exciteαc andβc through serially connected convolution layers,
merging, and sigmoid operators. Thirdly, the channel-wise attention vector is calculated using element-wise
production and sigmoid operation to emphasize correlations between squeezed internal and external feature
maps gc

i and gc
e. Finally, the attention vectormultiplies to the original internal featuremap y i to enhance

channel-wise vessel information under the information from the full-depth en face image. The entire channel-
external attention block is defined as

g g=y x S , 14c i
c
i

c
e◦ ( ) ( ) 

where channel-wise enhanced deep featuremaps g Î ´c
i p 1 and g Î ´c

e p 1 are defined as

g a b= +´


´ ´


´    , 15c
i

c
i

c
i

1 1 1 1 1 1 1 1( ) ( ) ( ) 

Figure 2.Network architecture of proposed external attention block.
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g a b= +´


´ ´


´    , 16c
e

c
e

c
e

1 1 1 1 1 1 1 1( ) ( ) ( ) 

with a b,c
i

c
i{ }and a b,c

e
c
e{ }calculatedwith (8) and (9) by replacing xwith y i and y e, respectively.

2.4. Up-sampling block
In up-samplingmodule, the shallow feature o0 and high-level feature y

ea aremerged by using global skip
structure and addition operation. The combination is helpful for enriching both high-frequency and low-
frequency features in LR space. Then, the LR featuremaps is upscaled toHRoutput through a sub-pixel
convolution layer. Finally, the featuremap’s channel dimension is reduced to 3 through a 3× 3 convolution
layer and treated as the output SR image. Two interpolation strategies including sub-pixel layer and
deconvolution layer are taken into considerationwhenwe design up-sampling block. Comparedwith the
deconvolution layer, the sub-pixel convolution layer can automatically learn an array of upscaling filters, and
was provedmore efficient insolving image SR problems (Ledig et al 2017).

3. Experiments

3.1. Experimental setups
With institutional review board approval andwaived patient consent, we retrospectively collected 2400 3D
OCTAdata from100 previously laser-treated patients with nevus flammeus. These data are collected at the First
Medical Center of PLAGeneralHospital, Beijing, China. The data acquisition system is developed following the
ultrahigh sensitive opticalmicroangiography scanning protocol (An et al 2010). For each B frame, 500A-lines
are collected by driving theX galvomirror forward and backward using a sawtoothwaveform. The B frame data
collection frequency is 200 Hz. To observe dynamicflow information, B-scan location is repeated 3 times. The
receptive field of theOCTA scanning is 4× 4 mm,which took 7.5 s for data acquisition. The eigen-
decomposition-based angiography algorithmwas adopted to separate the dynamic scattering signals (e.g.
flowing components in vascular networks) from the static tissue (e.g. non-moving tissue structural components)
by utilizing the statistical properties of time-varying complexOCT signals (Yousefi et al 2011). This algorithm is
a robustOCTA algorithm, which can adaptively filter out the bulk tissuemotion (e.g. heartbeat and breathing) to
provide superior blood flow images for in vivoOCTA imaging (Zhang et al 2016). For each 3DOCTdata, six
imaging depths (k= 120, 150, 180, 210, 240, 270) are selected to produceHR en face images, leading to 14 400 en
face images in total. The LR images are generated by two times downsampling theHR images. The entire data set
is divided into the training data set and testing data set. The training data set contains 11 520 samples (80%of the
entire data set). The testing data set contains 2880 samples (20%of the entire data set).

The proposedmethod is also evaluated on a publicOCTdataset (Li et al 2020), which contains 500 3DOCT
of retinal vascular. EachOCTdata is further separated into the internal limitingmembrane (ILM) layer, the
outer plexiform layer (OPL), and the Bruch’sMembrane (BM) according to their imaging depth along the axial
direction. The full-projection, ILM-OPL, andOPL-BM en face images are generated from each 3DOCTdata.
The full-projection en face image is the average projection of the entire 3DOCTvolume. The ILM-OPL en face
image is the average projection of 3DOCTdata between the ILMandOPL layers. TheOPL-BM en face image is
the average projection of 3DOCTdata between theOPL andBM layers. Different from the skinOCT cases, in
the retinalOCT cases, the full-projection en face image is used for guiding the SR image reconstruction of LR
ILM-OPL andOPL-BM en face images. The entire data set is also divided into the training data set (80%of the
entire data set) and the testing data set (20%of the entire data set).

The proposed network is implemented on aworkstationwith Intel Xeon E5-2630CPU and 64 GBRAM
withTensorflow and computes a unified device architecture environment. TheNvidia GTX2080TiGPU is used
to accelerate the training process to nearly 12 h each training. The initial learning rate is 10−4 and gradually
decreases when training the network. Themean square error loss is employed as the loss function of the
proposed network. The data set is only divided into a training set and testing set, and the validation set is ignored.
The validation set is usually used to select the super-parameters, e.g. number of epochs, and avoid overfitting.
The number of epochs used for training our network is 500, which is large enough to guarantee the stability and
convergence of the training process. Our training data set contains 11 520 en face images. According to the loss
curves, overfittingwas avoided. The proposed network is comparedwith the image interpolationmethod (bi-
cubic interpolation), and the state-of-the-art SR networks (EDSR (Lim et al 2017), RCAN (Zhang et al 2018) and
SAN (Dai et al 2019)). The comparisons are conducted qualitatively, by visually inspecting the image qualities,
and quantitatively, by calculating the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) between
the recovered and targetHR images.
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3.2. Visualization of external attentionmechanism
According to section 2.3, the inputs of the external attention block are the internal and external featuremaps
output from the feature extraction blocks. The internal featuremap y i is extracted from arbitrary-depth en face
image I kL . The external featuremap y e is extracted from full-depth en face image I KL . The output of the external
attention block is the enhanced featuremap y c. A 2D visualization of the different featuremaps is shown in
figure 3. The columns, from left to right, respectively show the internal, external, enhanced featuremaps and the
targetHR en face image.On the one hand, the bloodflow signal is barely observed in the internal featuremap,
but is relatively obvious in the external featuremap.On the other hand, the blood flow signal in the enhanced
featuremap is significant and strongly correlatedwith the targetHR image, which proved the efficiency of the
proposed external attentionmechanism.

The feature enhancement results from the proposed external attentionmechanism can be explained by the
following two aspects. Firstly, the full-depth en face image is generated by accumulating all gray values of the 3D
OCT image along the depth direction. This kind of accumulation can be considered as amean valuefilter, which
is helpful for noise suppression. Secondly, the full-depth en face image contains all the information of the
arbitrary-depth en face images. As a result, it will be helpful for guiding the resolution enhancement of the
arbitrary-depth en face images.

3.3. Results on skinOCTAdata set
The EDSR, RCAN, proposed network and its ablation network are trained and tested on the same skinOCTA
data set, as it is described in section 3.1. An illustration of the SR image reconstruction results is shown in
figure 4, tables 1 and 2. SR results with different imaging depths are evaluated. PSNR and SSIM, displayedwith a
white number infigure 4, are used for quantitatively evaluating these results. For all tested imaging depth, the
proposed network leads to the best results, which owns the highest PSNR and SSIM.

Evolution of quantitativemetrics with respect to the imaging depth is shown infigure Evolution of
quantitativemetrics with respect to the imaging depth is shown infigure 5. The quantitative comparison among
differentmethodswith different imaging depths itabulated in tables 1 and 2. As can be seen, the deep learning-
based resolution enhancementmethods are significantly better than the bi-cubicmethod. The proposed
network significantly outperformed the EDSR, RCAN, and SANmethods, especially in the large imaging depth
tests. For half depth SR en face image estimation, the proposedmethod achieved a 40.213 dBPSNR and 0.930
SSIM,which improved upon bi-cubic, EDSR, andRCANmethods (PSNR 1.160, 0.342, 0.162, and 0.165 dB,
respectively) (SSIM0.190, 0.04, 0.02 and 0.03, respectively). For full-depth SR en face image estimation, the
proposedmethod achieved a 40.543 dBPSNR and 0.940 SSIM,which improved upon bi-cubic, EDSR, RCAN,
and SANmethods (PSNR 1.308, 0.455, 0.218, and 0.196 dB, respectively) (SSIM0.190, 0.04, 0.02, and 0.02,
respectively).

3.4.Quantitativemicro-vascular analysis
Firstly, the vessel areamapA[i, j], perimetermap P[i, j], and skeletonmap S[i, j] are calculated for qualitatively
analyzing the skinmicro-vascular images. The perimetermap is generated by successively applying threshold
segmentation, skeletonization, andCanny edge detection on the original vessel image I[i, j]. The columns in
figure 6, from left to right, respectively show the original vesselmap I[i, j], the vessel areamapA[i, j], zoomed
vessel areamapA[i, j], the perimetermap P[i, j], zoomed perimetermapP[i, j], the skeletonmap S[i, j], zoomed
skeletonmap S[i, j]. The rows infigure 6, from top to bottom, respectively show themanually designed feature
maps calculated from the originalHR, recovered SR images, and LR images. By visually checking these images,
the vesselmaps from theHR and SR images are quite similar to each other, but significantly different from theses
from the LR images. The vessel areas are significantly over-estimated from the LR images, but accurately
calculated from the estimated SR images. Detailed information of the skeleton featuremaps aremiss-detected

Figure 3.An illustration of external attentionmechanism, from left to right respectively denoting two inputs (internal and external
deep featuremaps), one output (external attentionmap) of external attention, and a targetHR image.
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Figure 4. Super-resolution estimations of skinOCTA images using fromdifferentmethods at four different imaging depths (k= 150,
180, 210, 240).

Table 1.PSNRof SR images recovered fromdifferentmethods at different
imaging depths.

Imaging

depth bi-cubic EDSR RCAN SAN

Proposed

network

120 39.923 40.389 40.411 40.304 40.469

150 39.717 40.258 40.310 40.252 40.389

180 39.280 39.990 40.118 40.095 40.244

210 39.026 39.862 40.048 40.048 40.216

240 38.981 39.887 40.105 40.120 40.300

270 39.053 39.996 40.229 40.252 40.439

Table 2. SSIMbetween trueHR image and recovered SR image at different
imaging depth.

Imaging

depth bi-cubic EDSR RCAN SAN

Proposed

network

120 0.893 0.907 0.907 0.905 0.908

150 0.898 0.913 0.913 0.913 0.915

180 0.906 0.921 0.922 0.922 0.926

210 0.911 0.927 0.929 0.929 0.933

240 0.916 0.931 0.933 0.933 0.937

270 0.919 0.935 0.937 0.937 0.942
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from the LR image, but successfully recovered from the estimated SR images. Furthermore, comparedwith the
results fromoriginalHR images, there are fewer isolated points in the vessel area and skeletonmaps from the
estimated SR images, which implies that the proposedmethod can restrain the speckle noise in en face images
and further improve the accuracy of the following quantitative analysis.

Secondly, three quantitativemetrics are developed according to themanually designed featuremaps. They
are vessel area density, vessel complexity, and vessel perimeter index, which are defined as
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where pixel value accumulation is conducted at a 25× 25 neighbourhood of the testing point i j,[ ]. A i j,[ ]
denotes the non-zero pixels of the vessel area image. P i j,[ ]denotes the non-zero pixels enclosed by vessel
perimeters image. X i j,[ ]denotes all pixels on the neighbourhood. The box-plots of the quantitativemetrics in
the entire testing data set are shown infigure 7. The box-plots fromSR andHR images are quite similar, but
significantly different from those from the LR images, implying thatmore accuratemicro-vascular analysis can
be conducted by using the LROCTA images and the proposed SRnetwork. In other words, the proposed
methodmay reduce the dependence of the clinicalmicro-vascular analysis accuracy on the resolution ofOCT
imaging devices.

3.5. SR performance onOCT-500
The performance of the proposed SR network is also evaluated on the published retinal OCTdata set. The full-
projection en face images are used for improving the performance of the SR of the ILM-OPL andOPL-BM en face

Figure 6.An illustration of quantitative vesselmaps.

Figure 5.Evolution of super-resolution accuracywith respect to imaging depth, quantitativemetrics PSNR and SSIMare averaged
across entire testing data set.
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images. In other words, the ILM-OPL andOPL-BM en face images are used as I k, while the full-projection en face
image is used as I K infigure 1.

An illustration of the reconstruction results is shown infigure 8. Quantitative analysis of the results on the
entire testing set is tabulated in tables 3 and 4. The proposed network significantly outperformed the EDSR,
RCAN, and SANmethods, especially in theOPL-BMcases. For ILM-OPL SR en face image estimation, the

Figure 8. Super-resolution estimations of retinalOCT images usingdifferentmethods at two different imaging ranges.

Figure 7.Box-plots of three quantitativemetrics (VAD,VCI andVPI) from (a) LR, (b)HR, and (c) SROCTA images.

Table 3.PSNRof SR images recovered fromdifferentmethods at ILM-OPL,OPL-BMprojectionmaps.

Imaging depth bi-cubic EDSR RCAN SAN Proposed network

ILM-OPL 32.707 33.494 33.488 33.482 33.568

OPL-BM 29.621 31.056 31.138 31.133 31.224

Table 4. SSIMbetween trueHR image and recovered SR image at ILM-OPL,
OPL-BMprojectionmaps.

Imaging

depth bi-cubic EDSR RCAN SAN

Proposed

network

ILM-OPL 0.765 0.821 0.821 0.821 0.824

OPL-BM 0.748 0.823 0.822 0.822 0.825
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proposedmethod achieved a 33.568 dBPSNR and 0.824 SSIM,which improved upon bi-cubic, EDSR, RCAN
and SANmethods (PSNR 0.861, 0.074, 0.081, and 0.086 dB, respectively) (SSIM0.059, 0.003, 0.003 and 0.003,
respectively). ForOPL-BMSR en face image estimation, the proposedmethod achieved a 31.224 dBPSNR and
0.825 SSIM,which improved upon bi-cubic, EDSR, RCANand SANmethods (PSNR 1.603, 0.168, 0.086, and
0.089 dB, respectively) (SSIM0.077, 0.002, 0.003 and 0.003, respectively). Similar to the results from skinOCT
tests, the proposed network is also better than its ablation network in the retinalOCT tests, which further proved
the effectiveness of the proposed external attentionmechanism.

3.6. Ablation study andnetwork structure discussion
A series of ablation studies were conducted for discussing the construction of our network. Firstly, the external
attention block, as described in section 2.3, is removed fromour network. This networkwithout external
attention block is denotedwith ‘ABLATION_A, and is used to discuss the influence of external attention block
on the SR performance. Secondly, the spatial and channel attention units in RARDBs are removed fromour
network. This networkwith simplifiedRARDBs is denotedwith ‘ABLATION_B’, and is used to discuss the
influence of spatial and channel attention units on the SR performance. The quantitative evaluation of the
performance of the proposed network and its ablations, ‘ABLATION_A’ and ‘ABLATION_B’, are shown in
figure 9. As can be seen, the PSNR and SSIM from the proposed network are significantly higher than those from
its ablations, proved that the external attention block and the spatial and channel attention units are efficient in
improving the reconstruction accuracy of our image SR task.

In previous reports, researchers use three ormore feature extraction branches to estimate high-qualityOCT
images (Liu et al 2019, Jalili et al 2020). In ourmethod, only two branches, one for full-depth image IK and the
other for arbitrary-depth image Ik, are employed. To demonstrate the proposed structure is themost effective
structure, the proposed two branches network is comparedwith the three and four branches networks. For the
three branches network, two en face images (IK and I(K−10)) are used to guide the SR estimation of arbitrary-
depth image Ik. For the four branches network, three en face images (IK, I(K−10) and I(K−20)) are used to guide the
SR estimation of arbitrary-depth image Ik. The quantitative evaluation of the performance of these three
networks isshown infigure 10. As can be seen, the PSNR and SSIM from three and four branches strategies are a
little lower than those from the two branch strategy, which proved thatmore feature extraction branches can not
improve the SR reconstruction accuracy. Actually, the external attentionmechanism ismainly used to
emphasize the blood signal contained in both shallow and full-depth en face images. During this process, the
background signal, including noise, is also amplified. This amplificationwill be enhancedwith the increase of
the number of branches, whichwould reduce the SR reconstruction accuracy.

Figure 10.Quantitative evolution of SR results fromproposed networks with different number of feature extraction branches.

Figure 9.Quantitative evolution of proposed network and its ablations.
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4. Conclusion

In this paper, a deep neural network is proposed to calculate SROCTA en face images with arbitrary imaging
depth. Themorphological similarity between the arbitrary-depth and full-depth en face images is extracted by
deep feature representation and incorporated into the SR estimations using an external attentionmechanism.
The proposed network is tested on a clinical skinOCTAdata set and a public retinal OCTdata set. The results
show that the proposed external attentionmechanism can suppress invalid features and enhances significant
features in SR tasks. To further test the quality of the estimated SR images, the estimated SR images are used
forquantitativemeasurements of cutaneousmicrovessels. The estimated SR images lead to the results basically
the same as those from the truth SR images, which implies that the proposedmethodmay improve the clinical
quantitative assessment ofmicro-vascular diseases.
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