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Abstract

Optical coherence tomography (OCT) is a promising non-invasive imaging technique that owns
many biomedical applications. In this paper, a deep neural network is proposed for enhancing the
spatial resolution of OCT en face images. Different from the previous reports, the proposed can
recover high-resolution e face images from low-resolution en face images at arbitrary imaging depth.
This kind of imaging depth adaptive resolution enhancement is achieved through an external
attention mechanism, which takes advantage of morphological similarity between the arbitrary-depth
and full-depth en face images. Firstly, the deep feature maps are extracted by a feature extraction
network from the arbitrary-depth and full-depth en face images. Secondly, the morphological
similarity between the deep feature maps is extracted and utilized to emphasize the features strongly
correlated to the vessel structures by using the external attention network. Finally, the SR image is
recovered from the enhanced feature map through an up-sampling network. The proposed network is
tested on a clinical skin OCT data set and an open-access retinal OCT dataset. The results show that
the proposed external attention mechanism can suppress invalid features and enhance significant
features in our tasks. For all tests, the proposed SR network outperformed the traditional image
interpolation method, e.g. bi-cubic method, and the state-of-the-art image super-resolution
networks, e.g. enhanced deep super-resolution network, residual channel attention network, and
second-order attention network. The proposed method may increase the quantitative clinical
assessment of micro-vascular diseases which is limited by OCT imaging device resolution.

1. Introduction

As anon-invasive imaging technique, optical coherence tomography (OCT) has gained much attention in the
last decade. OCT uses near-infrared light to detect the luminous reflection coefficient of bio-tissues, and
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achieved 2—3 mm penetration depth and 10—40 pm spatial resolution, which is efficient for diagnosing (Tao et al
2017, Bekkers et al 2020), tumor angiogenesis (Kikuchi et al 2019, Liu et al 2020), and skin disease (Liu and
Drexler 2019, Meiburger et al 2019), etc.

Resolution of OCT can be mainly divided into axial and lateral resolutions. Axial resolution is defined as the
distinguish-ability of two nearest objects along the direction of the incident light, which mainly depends on the
wavelength. Lateral resolution is defined as the distinguishability along the direction perpendicular to incident
light, which primarily depends on the magnification of the imaging objective (Bizheva et al 2017). To improve
the spatial resolution of OCT, many methods have been proposed. These methods can be mainly divided into
hardware-based and digital-based methods. The hardware-based methods, e.g. adding an axon lens to the
sample arm of the interferometer (Ding et al 2002) or using liquid-filled polymer lenses in the endoscopic system
(Divetia et al 2005), improved spatial resolution with additional hardware, thus is cost-intensive and
implemented complexly. The digital-based methods, e.g. using the modified Bayesian residual transform (Tan
etal 2018) or the projection-resolved optical coherence tomography angiography (OCTA) (Wang et al 2017),
utilized digital signal processing to enhance spatial resolution, thus is low cost and implemented easily.

Image super-resolution (SR) (Yang et al 2008) is another efficient method for resolution enhancement. SR
method recovers high-resolution (HR) images from low-resolution (LR) ones by using their morphological
characteristics, and is widely studied and well-established in the field of computer vision. The traditional SR
methods enhance the image resolution by using the intrinsic morphological and structural information through
asparse-coding-based way. They are normally theoretically well-proved, but have limited speed and accuracy. In
the last few years, convolutional neural networks (CNN) based super-resolution methods have gained much
attention. The related reports showed that the CNN-based methods significantly outperform the traditional
neural networks in simulation and natural environments. In 2016, Dong et al (2016) applied CNN to super-
resolution reconstruction of images to establish an end-to-end mapping relationship between LR and HR
images. Later, Kim et al (2016) utilized residual and recursive modules in their network to improve SR
performance. In 2017, Lim et al (2017) proposed an enhanced deep super-resolution (EDSR) network, which
enhanced feature flowing in local residual modules of deep neural network by removing batch normalization
layers. Ledig et al (2017) up-scaled LR features with a sub-pixel layer which has been proved more effective than
the traditional transposed convolution layer. In 2018, Zhang et al (2018) proposed a residual dense network with
continuous and global residual structures to make full use of shallow feature information. Later, they further
presented an enhanced deep super-resolution network, named RCAN, to incorporate channel attention in
residual dense modules (Zhang et al 2018). In 2019, Dai et al (2019) proposed a normalization-based second-
order attention network named as SAN for SR tasks and achieved state-of-the-art performance.

SR method has also attracted much attention in medical image analysis. In 2018, Wang et al (2018) exploited
a generative adversarial network-based method to achieve SR across different fluorescence microscopy
modalities. Lok et al (2021) used a fully convolutional neural network to achieve fast super-resolution
ultrasound microvessel imaging. Liu et al (2019) proposed a deep learning-based SR pipeline for OCTA, which
has a higher signal-to-noise ratio and shows potential in clinical use. Park et al (2018) present a semi-supervised
deep learning approach to recover HR coherence tomography images from LR counterparts accurately. Shi et al
(2018) proposed a novel residual learning-based SR algorithm for magnetic resonance imaging, which combines
both multi-scale global residual learning and shallow network block-based local residual learning.

The SR methods for OCT image enhancement can be divided into the B-scan image-based and en face
image-based methods. The B-scan image-based methods aim to enhance the resolution of the B-scan image of
OCT. Fang et al (2013) proposed sparsity-based simultaneous denoising and interpolation to create high-quality
B-scan using fewer A-scans. Das et al (2020) proposed a generative adversarial network-based framework to
perform fast and reliable SR for OCT B-scan images. Qiu et al (2020) exploit U-net to obtain high signal-to-noise
ratio and HR B-scan images within a short scanning time from noisy and low-resolution B-scan images. The en
face image-based methods aim to enhance the resolution of en face image of OCT. As a commonly used
visualization method in both research and clinical scenarios, en face image, which projects a 3D OCT image into
2D along its incident light direction, is helpful for qualitative or quantitative assessments of the retinal micro-
vasculature (Jia et al 2015, Chu et al 2016, Fard et al 2018). As a result, the SR results of en face images are more
intuitionist than these of B-scan images, by considering that the morphological characteristics are more
significant in en face images than in B-scan images. Zhou et al (2020) used a recurrent generative adversarial
network to enhance the resolution of images collected from an OCTA device with 8 x 8 mm receptive field. The
results proved that the enhanced images are comparable to the images collected from a device with 3 X 3 mm
receptive field. Gao et al (2020) used CNN to improve the image quality of OCTA en face image. Compared with
raw images, the enhanced images have lower noise intensity, stronger contrast, and better vascular connectivity.
Jalili et al (2020) exploit a curvelet-based method to combine detailed information of a set of en face images to
construct high-quality en face image. Although there are already some reports on using SR method to enhance
OCT en face images, they all focus on improving the spatial resolution of en face images with a specific imaging

2



I0OP Publishing Phys. Med. Biol. 66 (2021) 195006 SRenetal

J' m[jijxw

'y Rl N DA ﬂ **************
H t H SR /%
. Share(’i Weights A e +ﬂ—ﬂ—.

C) Connection

-+ Element-wise sum

[\ Sub-pixel layer
1x1 Convolutional layer
3x3 Convolutional layer LR 7

[ Residual dense

Spatial attention Channel attention External attention Residual attention in residual dense block (RARDB)

Figure 1. Network architecture of proposed super-resolution network with external attention mechanism.

depth. Resolution enchantment for en face image with arbitrary imaging depth is helpful for enriching
information for both research and clinical studies (Nanji et al 2020).

In this paper, an imaging depth adaptive method is proposed for improving spatial resolution of OCT en face
images. Different from the previous reports, our method can reconstruct HR e face images from LR en face
images at arbitrary imaging depth by using the full-depth en face images (projection along the entire imaging
depth) as a guidance. The proposed method is implemented with a deep learning framework with an external
attention mechanism. Firstly, two-channel weights shared feature extraction networks are designed to extract
the deep feature maps of both arbitrary-depth and full-depth LR en face images. Secondly, an external attention
map is calculated from these two feature maps according to their morphological similarities. Thirdly, the
attention map is used to enhance the feature map of the arbitrary-depth image through a multiplication
operation. Finally, the SR image is recovered from the enhanced feature map through an up-sampling network.
The proposed method is tested on a clinical skin OCTA data set and a public retinal OCT data set and compared
with the traditional image interpolation method, e.g. bi-cubic interpolation, and the state-of-the-art SR
networks, e.g. EDSR, RCAN, and SAN.

2. Methodology

2.1.Network overview
Asshown in figure 1, to generate an en face image, one needs to accumulate a 3D OCT or OCTA image in z-
direction. For an en face image with imaging depth k, one has

k
I*G, j) =Y X(@,j, 1), forl <k<K, )

t=1

where I} is the en face image, Xisan x n x KOCT or OCTA image, and K is the total number of pixels along z-
direction. Our target is to estimated HR en face image If; from LR en face image If at arbitrary imaging depth

1 < k < K. During the estimation, the full-depth en face image I is used as a guidance. The proposed method
mainly consists of two feature extraction modules with shared weights, one external attention module, and one
up-sampling module. The feature extraction module contains two branches with shared weights for extracting
deep features from arbitrary- and full-depth en face images, If and IX. The external attention module fuses two
deep channel features and emphasizes the vessel structure in the feature maps. The up-sampling module
recovers the SR image from deep learned features.

2.2. Feature extraction block

The feature extraction module consists of a convolution layer followed by several sequential residual attention in
residual dense blocks (RARDBs) and two additional convolution layers, as shown in figure 1. The entire feature
extraction module could be formalized by

h* = Fo Fix10 C(0g; 015...,0D), (2)

where F and F, . denote convolution operations of convolution layers with 3 x 3and 1 x 1 kernels,
respectively, C denotes concatenation operation, and o represents the input/output feature maps of RARDBs.
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2.2.1. RARDB

As shown in figure 1, the RARDB block consists of spatial attention, channel attention, convolution layers, and
residual dense modules. The spatial attention and channel attention modules aim to emphasize the features
which are more helpful for our task. Several sequential residual dense units construct the residual dense
modules. The residual dense unit was proposed by Zhang et al (2018). Being different from the residual block
which has been used in high-performance SR (Kim et al 2016, Lim et al 2017, Tai et al 2017), the residual dense
unit has the advantage of making full use of shallow and deep features. The local skip connection is used to
reduce the information distillation during the feature refining. Following figure 1, for initial input oy = F(If),
the feature flow in the RARDBs can be formulized as

0441 = 04 + F o G(og) + Co S(og), (3)

where G denotes residual dense module, S and C denote the spatial and channel attention units, respectively.

2.2.2. Spatial attention mechanisms

Spatial attention module produces spatial-wise attention by utilizing the inter-spatial relationship of features
(Woo etal 2018) and is widely used in SR (Chen et al 2021), object classification (Zhu et al 2021). For a given
feature map x € R"*¥*? carrying h x w-dimensional spatial information and p-dimensional channel
information, the spatial attention unit uses the first-order statistics for feature enhancement in spatial space. The
spatial attention unit is formulated as

y=38kx) =x©SoFioClay B), (4)

where ®denotes element-wise product, S denotes the sigmoid function, o € R and 3, € R are averaged
and maximized feature maps in spatial space, respectively. Here, o and [, are implemented by maximum
pooling and average pooling in spatial dimensions, respectively. They are formulated as

P

s ) = 25" (xGir j, k) )
k=1

B,(G, ) = max(x(i, j, 2). ©)

The sigmoid function Sin (4) is mainly used as a gating operator for incorporating nonlinearity and mutual
exclusivity into our feature extraction network. It can efficiently emphasize useful features and suppress invalid
features.

2.2.3. Channel attention mechanisms

Channel attention module generates channel-wise attention maps, which have been proved efficient on image
captioning (Chen et al 2017), fusion (Li et al 2020), and segmentation (Lee ef al 2020). The channel attention unit
uses the first-order statistics for feature enhancement in channel space. Similar to spatial attention, the channel
attention unit is formulated as

y=x0 S(Fl 0 Fixi(ad) + Fl o Fixi(Bo)s )

where F| , is a convolution operation re-scale the feature map from 0.25 x ptop, a, € RPand 3, € RP are
averaged and maximized feature maps in channel space, respectively. The o, and (3, are implemented by
maximum pooling and average pooling in channel dimensions, respectively. They are formulated as

1A,
ac(k) = WZZ(-X(L]’ k), (8

i=1j=1

B.(k) = max (max (x(:, :,k))). ©)

2.3. External attention bock

The external attention block’s primary purpose is to utilize deep feature maps extracted from the full-depth en
face image to enhance vessel structure information in the deep feature maps extracted from the arbitrary-depth
en faceimage. As shown in figure 2, the feature fusion block consists of a spatial-external attention block
followed by a channel-external attention block. The entire feature fusion block can be formulated by

ye =x' O x4 & o E(x, x°), (10)

where x' € RP>*"*Pand x¢ € RP*"*P? are the internal and external feature maps, respectively,

Eg RExIxwxp REXhXwxpand £, RE*W*wxp sy RIXWXP denote the spatial-external attention and channel-
external attention blocks, respectively. Inspired by spatial attention and channel attention, spatial-external
attention and channel-external attention also use the maximum pooling and average pooling operators to
enhance the spatial and channel features, which are more efficient on our SR task. Unlike spatial attention and

4



10P Publishing

Phys. Med. Biol. 66 (2021) 195006 SRenetal

i M 7 — ﬁ—» —>
xt || _,!'i’ at _ l . I:[’ ﬂ‘l
oy A Wy X=ln- d a ¥é
— = o-fff ~ -1} % o - +-(5
i/ 14 1 f
I ’b 1 L7 yi im ’_I
i — —_— >
L dge 4 ;
—X 3 X—>i|4—>S - - x..i..s..x» —~P—
RN VIR L o]
H ¥ _f '!’i’ 4i’ L] _.Eﬁw_, _.ﬂ y¢ yee
—4 1 d !’ C-’!”“—’ —»!" a | Jag —l
g WL X-H - - P,
x° ] ;! B¢ I — _[ %
e L &P
v i 4
c
Spatial External Attention - -
Channel-External Attention

[]Average-pooling  [] Max-pooling []1x1 Convolutional layer + Element-wise sum S) Sigmoid X) Element-wise product

Figure 2. Network architecture of proposed external attention block.

channel attention, the feature enhancement in spatial-external attention and channel-external attention focused
on the structural similarities between the superficial image I} and the full-depth image I, resulting in an
external supervision mechanism for the superficial image SR task.

2.3.1. Spatial-external attention

Figure 2 shows the construction of the spatial-external attention block. The spatial-external attention block
mainly consists of two-channel attention units with shared wights, followed by a point element-wise product
and sigmoid activation. Firstly, for a given internal deep feature map x " two channel-independent feature maps
ai and (8 § are extracted by using average- and max-pooling, respectively. Secondly, these two feature maps are
concatenated together and fused into a h x w feature map fyi through a convolution layer. Thirdly, following the
same procedure, the external feature map +¢ is generated. Fourthly, Pyi and ; are element-wise produced to
extract vessel-dependent attention maps. Finally, the vessel enhanced feature maps ' and y are calculated by
multiplying the spatial-wise attention map with x*and x¢, respectively. The entire spatial-external attention
block can be formulated as

[ye] = &(x, x%) = [x;] ©So (1O (11)
y X

where sigmoid function Sis used to incorporate nonlinearity and mutual exclusivity into our external attention
module, and the spatial-wise enhanced deep feature maps 7. € R and Vi € R"" are defined as

vi= Fixio Clal, B, (12)
vs = Fixi0 C(as, B9). (13)
with {a, 3} and {af, 3¢} calculated by (5) and (6).

2.3.2. Channel-external attention

Figure 2 shows the construction of the channel-external attention block. The channel-external attention block
mainly consists of two-channel attention units with shared wights, followed by a point element-wise product
and sigmoid activation. Firstly, we use average- and max-pooling to generate channel descriptors o and (3, of
length p, which contain global spatial information from spatial-external attention output y’. Secondly, we also
introduce a gating mechanism to squeeze and excite . and (3, through serially connected convolution layers,
merging, and sigmoid operators. Thirdly, the channel-wise attention vector is calculated using element-wise
production and sigmoid operation to emphasize correlations between squeezed internal and external feature
maps 72 and ¢. Finally, the attention vector multiplies to the original internal feature map y*to enhance
channel-wise vessel information under the information from the full-depth en face image. The entire channel-
external attention block is defined as

ye=x0S0 (@), (14)
where channel-wise enhanced deep feature maps 72 € Rr*'and ¢ € RP*!are defined as

’%:f[xlo-ﬂxl(aé)+~7:I><lo‘7:1><1(5i)’ (15)
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VEZFIXIOJ:IXI(O‘D+f1Txlo‘F1><1(ﬂi)’ (16)

with {af, £} and { of, B¢} calculated with (8) and (9) by replacing x with yi and y ¢, respectively.

2.4. Up-sampling block

In up-sampling module, the shallow feature 0, and high-level feature y * are merged by using global skip
structure and addition operation. The combination is helpful for enriching both high-frequency and low-
frequency features in LR space. Then, the LR feature maps is upscaled to HR output through a sub-pixel
convolution layer. Finally, the feature map’s channel dimension is reduced to 3 through a 3 x 3 convolution
layer and treated as the output SR image. Two interpolation strategies including sub-pixel layer and
deconvolution layer are taken into consideration when we design up-sampling block. Compared with the
deconvolution layer, the sub-pixel convolution layer can automatically learn an array of upscaling filters, and
was proved more efficient insolving image SR problems (Ledig et al 2017).

3. Experiments

3.1. Experimental setups

With institutional review board approval and waived patient consent, we retrospectively collected 2400 3D
OCTA data from 100 previously laser-treated patients with nevus flammeus. These data are collected at the First
Medical Center of PLA General Hospital, Beijing, China. The data acquisition system is developed following the
ultrahigh sensitive optical microangiography scanning protocol (An et al 2010). For each B frame, 500 A-lines
are collected by driving the X galvo mirror forward and backward using a sawtooth waveform. The B frame data
collection frequency is 200 Hz. To observe dynamic flow information, B-scan location is repeated 3 times. The
receptive fleld of the OCTA scanning is 4 X 4 mm, which took 7.5 s for data acquisition. The eigen-
decomposition-based angiography algorithm was adopted to separate the dynamic scattering signals (e.g.
flowing components in vascular networks) from the static tissue (e.g. non-moving tissue structural components)
by utilizing the statistical properties of time-varying complex OCT signals (Yousefi et al 2011). This algorithm is
arobust OCTA algorithm, which can adaptively filter out the bulk tissue motion (e.g. heartbeat and breathing) to
provide superior blood flow images for in vivo OCTA imaging (Zhang et al 2016). For each 3D OCT data, six
imaging depths (k= 120, 150, 180, 210, 240, 270) are selected to produce HR en face images, leading to 14 400 en
faceimages in total. The LR images are generated by two times downsampling the HR images. The entire data set
is divided into the training data set and testing data set. The training data set contains 11 520 samples (80% of the
entire data set). The testing data set contains 2880 samples (20% of the entire data set).

The proposed method is also evaluated on a public OCT dataset (Li et al 2020), which contains 500 3D OCT
of retinal vascular. Each OCT data is further separated into the internal limiting membrane (ILM) layer, the
outer plexiform layer (OPL), and the Bruch’s Membrane (BM) according to their imaging depth along the axial
direction. The full-projection, ILM-OPL, and OPL-BM en face images are generated from each 3D OCT data.
The full-projection en face image is the average projection of the entire 3D OCT volume. The ILM-OPL en face
image is the average projection of 3D OCT data between the ILM and OPL layers. The OPL-BM en face image is
the average projection of 3D OCT data between the OPL and BM layers. Different from the skin OCT cases, in
the retinal OCT cases, the full-projection en face image is used for guiding the SR image reconstruction of LR
ILM-OPL and OPL-BM en face images. The entire data set is also divided into the training data set (80% of the
entire data set) and the testing data set (20% of the entire data set).

The proposed network is implemented on a workstation with Intel Xeon E5-2630 CPU and 64 GB RAM
with Tensorflow and computes a unified device architecture environment. The Nvidia GTX 2080Ti GPU is used
to accelerate the training process to nearly 12 h each training. The initial learning rate is 10~* and gradually
decreases when training the network. The mean square error loss is employed as the loss function of the
proposed network. The data set is only divided into a training set and testing set, and the validation set is ignored.
The validation set is usually used to select the super-parameters, e.g. number of epochs, and avoid overfitting.
The number of epochs used for training our network is 500, which is large enough to guarantee the stability and
convergence of the training process. Our training data set contains 11 520 en face images. According to the loss
curves, overfitting was avoided. The proposed network is compared with the image interpolation method (bi-
cubic interpolation), and the state-of-the-art SR networks (EDSR (Lim et al 2017), RCAN (Zhang et al 2018) and
SAN (Dai et al 2019)). The comparisons are conducted qualitatively, by visually inspecting the image qualities,
and quantitatively, by calculating the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) between
the recovered and target HR images.
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Figure 3. An illustration of external attention mechanism, from left to right respectively denoting two inputs (internal and external
deep feature maps), one output (external attention map) of external attention, and a target HR image.

3.2. Visualization of external attention mechanism

According to section 2.3, the inputs of the external attention block are the internal and external feature maps
output from the feature extraction blocks. The internal feature map y'is extracted from arbitrary-depth en face
image If. The external feature map y* is extracted from full-depth e face image I~. The output of the external
attention block is the enhanced feature map y“. A 2D visualization of the different feature maps is shown in
figure 3. The columns, from left to right, respectively show the internal, external, enhanced feature maps and the
target HR en face image. On the one hand, the blood flow signal is barely observed in the internal feature map,
but is relatively obvious in the external feature map. On the other hand, the blood flow signal in the enhanced
feature map is significant and strongly correlated with the target HR image, which proved the efficiency of the
proposed external attention mechanism.

The feature enhancement results from the proposed external attention mechanism can be explained by the
following two aspects. Firstly, the full-depth en face image is generated by accumulating all gray values of the 3D
OCT image along the depth direction. This kind of accumulation can be considered as a mean value filter, which
is helpful for noise suppression. Secondly, the full-depth en face image contains all the information of the
arbitrary-depth en face images. As a result, it will be helpful for guiding the resolution enhancement of the
arbitrary-depth en face images.

3.3. Results on skin OCTA data set

The EDSR, RCAN, proposed network and its ablation network are trained and tested on the same skin OCTA
data set, as it is described in section 3.1. An illustration of the SR image reconstruction results is shown in

figure 4, tables 1 and 2. SR results with different imaging depths are evaluated. PSNR and SSIM, displayed with a
white number in figure 4, are used for quantitatively evaluating these results. For all tested imaging depth, the
proposed network leads to the best results, which owns the highest PSNR and SSIM.

Evolution of quantitative metrics with respect to the imaging depth is shown in figure Evolution of
quantitative metrics with respect to the imaging depth is shown in figure 5. The quantitative comparison among
different methods with different imaging depths itabulated in tables 1 and 2. As can be seen, the deep learning-
based resolution enhancement methods are significantly better than the bi-cubic method. The proposed
network significantly outperformed the EDSR, RCAN, and SAN methods, especially in the large imaging depth
tests. For half depth SR en face image estimation, the proposed method achieved a40.213 dB PSNR and 0.930
SSIM, which improved upon bi-cubic, EDSR, and RCAN methods (PSNR 1.160, 0.342,0.162, and 0.165 dB,
respectively) (SSIM 0.190, 0.04, 0.02 and 0.03, respectively). For full-depth SR en face image estimation, the
proposed method achieved a 40.543 dB PSNR and 0.940 SSIM, which improved upon bi-cubic, EDSR, RCAN,
and SAN methods (PSNR 1.308, 0.455, 0.218, and 0.196 dB, respectively) (SSIM 0.190, 0.04, 0.02, and 0.02,
respectively).

3.4. Quantitative micro-vascular analysis

Firstly, the vessel area map A[3, j], perimeter map P[3, j], and skeleton map S[3, j] are calculated for qualitatively
analyzing the skin micro-vascular images. The perimeter map is generated by successively applying threshold
segmentation, skeletonization, and Canny edge detection on the original vessel image I3, j]. The columns in
figure 6, from left to right, respectively show the original vessel map I[3, ], the vessel area map Al j], zoomed
vessel area map A[4, j], the perimeter map P[3, jI, zoomed perimeter map P[i, j], the skeleton map S[3, j1, zoomed
skeleton map S[3, j]. The rows in figure 6, from top to bottom, respectively show the manually designed feature
maps calculated from the original HR, recovered SR images, and LR images. By visually checking these images,
the vessel maps from the HR and SR images are quite similar to each other, but significantly different from theses
from the LR images. The vessel areas are significantly over-estimated from the LR images, but accurately
calculated from the estimated SR images. Detailed information of the skeleton feature maps are miss-detected
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Table 1. PSNR of SR images recovered from different methods at different

imaging depths.

Imaging Proposed
depth bi-cubic EDSR RCAN SAN network
120 39.923 40.389 40.411 40.304 40.469
150 39.717 40.258 40.310 40.252 40.389
180 39.280 39.990 40.118 40.095 40.244
210 39.026 39.862 40.048 40.048 40.216
240 38.981 39.887 40.105 40.120 40.300
270 39.053 39.996 40.229 40.252 40.439

Table 2. SSIM between true HR image and recovered SR image at different

imaging depth.

Imaging Proposed
depth bi-cubic EDSR RCAN SAN network
120 0.893 0.907 0.907 0.905 0.908
150 0.898 0.913 0.913 0.913 0.915
180 0.906 0.921 0.922 0.922 0.926
210 0.911 0.927 0.929 0.929 0.933
240 0.916 0.931 0.933 0.933 0.937
270 0.919 0.935 0.937 0.937 0.942
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from the LR image, but successfully recovered from the estimated SR images. Furthermore, compared with the
results from original HR images, there are fewer isolated points in the vessel area and skeleton maps from the
estimated SR images, which implies that the proposed method can restrain the speckle noise in en face images
and further improve the accuracy of the following quantitative analysis.

Secondly, three quantitative metrics are developed according to the manually designed feature maps. They
are vessel area density, vessel complexity, and vessel perimeter index, which are defined as

ST AL ]

VAD= =17 7 (17)
Zizlzjle [1, ]]
m m . )2
(S0, Pl 1)
VOl =~ (18)
Z,‘:1Z]’:1A[1>]]
s pli
VPI = ZizizmPlb /1 (19)

SIS Xy i1

where pixel value accumulation is conducted ata 25 x 25 neighbourhood of the testing point [i, j]. A[7, j]
denotes the non-zero pixels of the vessel area image. P[i, j] denotes the non-zero pixels enclosed by vessel
perimeters image. X [i, j] denotes all pixels on the neighbourhood. The box-plots of the quantitative metrics in
the entire testing data set are shown in figure 7. The box-plots from SR and HR images are quite similar, but
significantly different from those from the LR images, implying that more accurate micro-vascular analysis can
be conducted by using the LR OCTA images and the proposed SR network. In other words, the proposed
method may reduce the dependence of the clinical micro-vascular analysis accuracy on the resolution of OCT
imaging devices.

3.5. SR performance on OCT-500
The performance of the proposed SR network is also evaluated on the published retinal OCT data set. The full-
projection en face images are used for improving the performance of the SR of the ILM-OPL and OPL-BM en face
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Table 3. PSNR of SR images recovered from different methods at ILM-OPL, OPL-BM projection maps.

Imaging depth bi-cubic EDSR RCAN SAN Proposed network
ILM-OPL 32.707 33.494 33.488 33.482 33.568
OPL-BM 29.621 31.056 31.138 31.133 31.224

Table 4. SSIM between true HR image and recovered SR image at ILM-OPL,
OPL-BM projection maps.

Imaging Proposed
depth bi-cubic EDSR RCAN SAN network
ILM-OPL 0.765 0.821 0.821 0.821 0.824
OPL-BM 0.748 0.823 0.822 0.822 0.825

images. In other words, the ILM-OPL and OPL-BM en face images are used as I¥, while the full-projection en face
image is used as I in figure 1.

An illustration of the reconstruction results is shown in figure 8. Quantitative analysis of the results on the
entire testing set is tabulated in tables 3 and 4. The proposed network significantly outperformed the EDSR,
RCAN, and SAN methods, especially in the OPL-BM cases. For ILM-OPL SR en face image estimation, the
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proposed method achieved a 33.568 dB PSNR and 0.824 SSIM, which improved upon bi-cubic, EDSR, RCAN
and SAN methods (PSNR 0.861, 0.074, 0.081, and 0.086 dB, respectively) (SSIM 0.059, 0.003, 0.003 and 0.003,
respectively). For OPL-BM SR en face image estimation, the proposed method achieved a31.224 dB PSNR and
0.825 SSIM, which improved upon bi-cubic, EDSR, RCAN and SAN methods (PSNR 1.603, 0.168, 0.086, and
0.089 dB, respectively) (SSIM 0.077, 0.002, 0.003 and 0.003, respectively). Similar to the results from skin OCT
tests, the proposed network is also better than its ablation network in the retinal OCT tests, which further proved
the effectiveness of the proposed external attention mechanism.

3.6. Ablation study and network structure discussion

A series of ablation studies were conducted for discussing the construction of our network. Firstly, the external
attention block, as described in section 2.3, is removed from our network. This network without external
attention block is denoted with ‘ABLATION_A, and is used to discuss the influence of external attention block
on the SR performance. Secondly, the spatial and channel attention units in RARDBs are removed from our
network. This network with simplified RARDBs is denoted with ‘ABLATION_B’, and is used to discuss the
influence of spatial and channel attention units on the SR performance. The quantitative evaluation of the
performance of the proposed network and its ablations, ‘ABLATION_A’ and ‘ABLATION_B’, are shown in
figure 9. As can be seen, the PSNR and SSIM from the proposed network are significantly higher than those from
its ablations, proved that the external attention block and the spatial and channel attention units are efficient in
improving the reconstruction accuracy of our image SR task.

In previous reports, researchers use three or more feature extraction branches to estimate high-quality OCT
images (Liu et al 2019, Jalili et al 2020). In our method, only two branches, one for full-depth image Iy and the
other for arbitrary-depth image I, are employed. To demonstrate the proposed structure is the most effective
structure, the proposed two branches network is compared with the three and four branches networks. For the
three branches network, two en faceimages (Ix and I x_1¢)) are used to guide the SR estimation of arbitrary-
depth image I;. For the four branches network, three en face images (I, Ix—10y and I x_»0)) are used to guide the
SR estimation of arbitrary-depth image I;. The quantitative evaluation of the performance of these three
networks isshown in figure 10. As can be seen, the PSNR and SSIM from three and four branches strategies are a
little lower than those from the two branch strategy, which proved that more feature extraction branches can not
improve the SR reconstruction accuracy. Actually, the external attention mechanism is mainly used to
emphasize the blood signal contained in both shallow and full-depth en face images. During this process, the
background signal, including noise, is also amplified. This amplification will be enhanced with the increase of
the number of branches, which would reduce the SR reconstruction accuracy.
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4. Conclusion

In this paper, a deep neural network is proposed to calculate SR OCTA en face images with arbitrary imaging
depth. The morphological similarity between the arbitrary-depth and full-depth en face images is extracted by
deep feature representation and incorporated into the SR estimations using an external attention mechanism.
The proposed network is tested on a clinical skin OCTA data set and a public retinal OCT data set. The results
show that the proposed external attention mechanism can suppress invalid features and enhances significant
features in SR tasks. To further test the quality of the estimated SR images, the estimated SR images are used
forquantitative measurements of cutaneous microvessels. The estimated SR images lead to the results basically
the same as those from the truth SR images, which implies that the proposed method may improve the clinical
quantitative assessment of micro-vascular diseases.
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