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A B S T R A C T

Due to the huge gap between the high dynamic range of natural scenes and the limited (low) range of
consumer-grade cameras, a single-shot image can hardly record all the information of a scene. Multi-exposure
image fusion (MEF) has been an effective way to solve this problem by integrating multiple shots with different
exposures, which is in nature an enhancement problem. During fusion, two perceptual factors including the
informativeness and the visual realism should be concerned simultaneously. To achieve the goal, this paper
presents a deep perceptual enhancement network for MEF, termed as DPE-MEF. Specifically, the proposed
DPE-MEF contains two modules, one of which responds to gather content details from inputs while the other
takes care of color mapping/correction for final results. Both extensive experimental results and ablation studies
are conducted to show the efficacy of our design, and demonstrate its superiority over other state-of-the-art
alternatives both quantitatively and qualitatively. We also verify the flexibility of the proposed strategy on
improving the exposure quality of single images. Moreover, our DPE-MEF can fuse 720p images in more than
60 pairs per second on an Nvidia 2080Ti GPU, making it attractive for practical use. Our code is available at
https://github.com/dongdong4fei/DPE-MEF.
. Introduction

When one takes pictures of natural scenes using digital cameras, it
s difficult to acquire ideally exposed images, no matter how to adjust
he exposure time and aperture. In other words, some areas of over-
xposure and/or under-exposure often appear in a single image, hardly
resenting all the contents of scene. Please see Fig. 1(a) and (b) for
xample. The reason is that the scene dynamic range spans much wider
han the camera can record.

To mitigate the above issue, multi-exposure image fusion (MEF for
hort), as a cost-effective solution, has been drawing significant atten-
ion from the community, since barely MEF methods involve profes-
ional imaging equipment and additional knowledge about, for exam-
le, the camera response function, making them general and attractive
or practical use. Formally, the task of MEF aims to reassemble a given
equence of low dynamic range (LDR) images under different exposures
nto a high dynamic range (HDR) one with rich information and visual
ealism, which is in nature an enhancement problem.

Towards this purpose, a variety of algorithms have been proposed,
hich can be roughly divided in to traditional methods and deep learn-

ng methods. Specifically for the traditional category, existing methods
re either spatial-domain based [1,2] or transform-domain based [3].
ecause all these methods employ handcraft features to accomplish the
usion process, the performance is limited and lack of robustness to
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dealing with complex and diverse scenes. Recently, with the emergence
of deep learning, the improvement over traditional strategies have
been witnessed by many computer vision tasks, like [4–7], due to the
strong feature extraction ability of deep networks. As a consequence, a
number of deep learning based attempts have been designed to solve
the MEF problem. The key factor restricting the performance of deep
learning methods is no ground-truth real data available for MEF. To
ameliorate the situation, for instance, Prabhakar et al. designed a deep
network called DeepFuse [8] by adopting the metric MEF-SSIM [9] in
an unsupervised fashion. However, the MEF-SSIM term merely concerns
the structure and contrast of source images to be preserved in the
fused image, which is insufficient to produce satisfied results because
of neglecting other aspects. Alternatively, Xu et al. [10] converted the
unsupervised setting into a supervised one by choosing the best fusion
results from existing methods to serve as the pseudo ground truths.
Despite the improvement made by the conversion, the performance
is inevitably restricted by the existing methods where those pseudo
ground truths come from (please recall the enhancement nature).

We notice that, different from other image fusion scenarios, like in-
frared and visible fusion that concentrates more on the informativeness
and acts as a pre-processing step to improve downstream tasks [11,12],
MEF should take into account, besides the informativeness, the visual
vailable online 4 November 2021
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realism of the fused results. Among factors affecting the aesthetics of
an image, the color is arguably the most pivotal one. Most, if not all, of
existing MEF approaches first switch the RGB color-space of images to
a luminance and chrominance separation color-space, e.g. YCbCr, then
apply fusion strategies only on the luminance (Y channel). However, in
such a way, the color of fused images often turns out to be relatively
pale and distorted, because the color information of (extremely) under-
exposed images may be (seriously) ruined due to the limited quality of
sensors.

Based on the above considerations, this study presents a deep
neural network to accomplish the MEF task. To be concrete, the main
contributions of this paper can be summarized as follows:

1. For obtaining informative and visually striking fused results, we
design a deep perceptual enhancement net for MEF, namely DPE-
MEF. The DPE-MEF is consisted of two functional subnets, which
are responsible to collect important details from multiple inputs
and guarantee the aesthetic, respectively.

2. Driven by the nature of fusion, the detail enhancement mod-
ule attempts to fully explore details from source inputs. En-
hanced images are efficiently formed through seeking best lo-
cal exposures, which perform as references to guide the detail
enhancement module.

3. To ensure the visual quality, the color enhancement module is
introduced. It is able to refine the appearance by learning the
relationship between color and brightness in natural images of
the same scene, so as to fit more realistic and vivid color for
fused images, significantly improving the visual perception.

4. Extensive experiments are conducted to demonstrate the efficacy
of our design, and reveal its advantages in comparison with
state-of-the-art methods. We further verify the proposed strategy
can be used for boosting the exposure quality for single images.

2. Related work

Over past decades, MEF has been attracting much attention from the
community due to its wide applicable range. Existing schemes can be
roughly grouped into traditional and deep learning methods [15]. This
section will briefly review the classic and contemporary approaches
that are closely related to ours.

Traditional methods generally contain three major components,
ncluding image transformation, activity level (informativeness) mea-
urement, and fusion strategy designing [16], which can be mainly split
nto spatial-domain based and transform-domain based techniques. The
ormer ones directly perform fusion strategies on either pixel level or
atch level. Methods work on pixel-level usually make effort to calcu-
ate proper weight maps for the source images, and then perform fusion
y the weighted addition. As a representative, Liu et al. [17] proposed
method based on dense scale invariant feature transform, and apply

ense SIFT descriptor as activity level measurement to compute weight
aps. Patch-based works typically first evaluate information amounts

f patches within source images from different aspects, then combine
hose with richest information to compose the fused image, with [18]
s one of the earliest patch-based approaches. Ma et al. customized a
tructural patch decomposition method for MEF [1,19], and utilized
his decomposition strategy as an optimization index to further pro-
ose an optimization-based method [20]. The above methods have the
imitations, i.e., pixel-based approaches often suffer from the brightness
ransition problem due to the lack of global information, while patch-
ased ones very likely introduce (halo) artifacts around boundaries.
s for transform-domain based methods, they typically perform fusion
trategies on the coefficients and then inverse transform back to the
riginal domain. Burt et al. [21] designed a pyramid decomposition
cheme for MEF, which is arguably the first transform-based attempt
n the MEF task. Moreover, Mertens et al. [22] tried to combine the
249

ontrast, saturation and well-exposedness to measure the quality of l
source images, then generated weight maps to fuse the source images in
a pyramid manner. Li et al. [23] employed a guided filter to decompose
source images into their base and detail layers, and then merge them
by weighted average for obtaining final fused images. Many follow-ups
alternatively adopt other ways to do the job, such as wavelet [24],
gradient [25], and PCA [26]. Though showing somewhat reasonable
results, these traditional methods usually rely on hand-craft features
and manually designed fusion strategies. Due to the inadequate abilities
in feature extraction and integration, most of them require a long
sequence of source images with small exposure intervals to generate
relatively good fusion results, requiring heavy computational load and
limiting the applicable scenarios. Notice that with less source images
having large exposure variation, the quality of fused results by these
approaches will be dramatically degraded.

Deep learning methods have become dominant in MEF recently,
hich considerably relieve the demand on the quantity and quality of

ource images, and achieve better fusion results [27]. The first DL-based
ttempt may trace back to DeepFuse [28], which builds a convolutional
etwork to directly merge the luminance components of the source
mages by optimizing the unsupervised metric MEF-SSIM [9], and fuse
he chrominance parts via a weighted fusion strategy. However, MEF-
SIM itself is insufficient to assure the fusion quality, and the absence
f detailed chrominance treatment frequently results in color distortion.
ollowing DeepFuse, Qi et al. [29] leveraged the multi-channel MEF-
SIM [20] as the optimization objective to avoid the conversion of
olor-space. Ma et al. [13] designed a network called MEF-Net, which
ollows the weighted fusion line. The MEF-Net generates weight maps
hrough feeding down-sampled source images into the network, so
s to reduce the computational cost. Because of its pixel-wise weight
ddition manner, it also has troubles as traditional pixel-based methods
ike overlooking global structure information. The above DL-based
lgorithms perform in different unsupervised ways. Alternatively, some
orks turn the MEF task into a supervised manner by taking fused

mages produced by existing fusion methods as pseudo ground truths.
u et al. [10] employed generative adversarial networks for the MEF

ask, namely MEF-GAN. Zhang et al. proposed IFCNN [30], which
ses two branches to extract features from each source image, then
dopts element-wise fusion rules to fuse the deep features, and finally
enerates fused image from the fused features by two convolution
ayers. Obviously, the performance of these supervised approaches
s restricted by the involved existing methods. It is not difficult to see
rtifacts in reference images and thus in final fused results. Besides,
here are several unified deep learning based methods proposed to serve

variety of image fusion tasks. These methods usually use common
mage attributes as a measure of informativeness, then carry out fusion
o gather the informative parts. For instance, DIF-Net [31] adopts
tructure tensors to evaluate the structure intensity of source images.
n PMGI [32] and SDNet [33], the gradient and intensity are both used,
hile U2Fusion [14] utilizes the gradient of deep features to preserve

he similarity between the fused result and source images. Although
his kind of methods expands the scope of application, they inevitably
ose specific considerations for different fusion scenarios. In addition,
hey also suffer from color distortion since the operation is performed
nly on the luminance channel to achieve multi-task versatility.

. Problem analysis

We emphasize that the goal of MEF is to generate an informative
nd visually pleasant result from multiple images of a certain scene. The
EF task is in nature an enhancement problem, for which the ground

ruth is generally unavailable. In this situation, several schemes have
een studied, which make efforts to train deep networks using non-
eference metrics in unsupervised settings. The non-reference image
uality metric MEF-SSIM is the most commonly used unsupervised MEF
valuation metric [9]. It is used as the loss term in many methods

ike [13,28,29]. Let us here take a closer look at MEF-SSIM. Inspired
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(a) Under-exposed input (b) Over-exposed input (c) Corrected from (a) (ours) (d) Corrected from (b) (ours)

(e) Fused by MEF-Net [13] (f) Fused by U2Fusion [14] (g) Fused by MEF-GAN [10] (h) Fused by DPE-MEF (ours)

Fig. 1. An enhancement example. (a) and (b) depict a pair of under-exposed and over-exposed images of the same scene. (c) and (d) show the processed results by our method on
single images (a) and (b), respectively. (e)–(h) give the fused results by MEF-Net, U2Fusion, MEF-GAN, and our DPE-MEF, respectively. By jointly considering the informativeness
and the visual realism, our DPE-MEF shows its clear advantages, such as sharp details and vivid colors, over other competitors. Please zoom in the pictures to see more details.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
by the structural similarity (SSIM) index, MEF-SSIM is a patch-based
metric, which decomposes each image patch x𝑘 into its signal strength
c𝑘, signal structure s𝑘 and mean intensity 𝑙𝑘 in the following way:

x𝑘 = ‖

‖

‖

x𝑘 − 𝜇x𝑘
‖

‖

‖2
⋅

x𝑘 − 𝜇x𝑘
‖

‖

‖

x𝑘 − 𝜇x𝑘
‖

‖

‖2

+ 𝜇x𝑘

= ‖

‖

x̃𝑘‖‖2 ⋅
x̃𝑘

‖

‖

x̃𝑘‖‖2
+ 𝜇x𝑘 = c𝑘 ⋅ s𝑘 + 𝑙𝑘,

(1)

where ‖⋅‖2 denotes the 𝓁2 norm, 𝜇x𝑘 stands for the mean value of x𝑘,
and x̃𝑘 designates the mean-removed patch. The desired contrast for the
target patch is determined by the highest contrast of 𝐾 corresponding
patches in source images, i.e. ĉ = max

1≤𝑘≤𝐾
c𝑘. The final structure can be

constructed by ŝ = s̄
‖s̄‖2

with

s̄ =
∑𝐾

𝑘=1 ‖x̃𝑘‖𝑝 ⋅ s𝑘
∑𝐾

𝑘=1 ‖x̃𝑘‖𝑝
, (2)

where ‖⋅‖𝑝 means the 𝓁𝑝 norm. As can be seen, the fusion is carried out
by a simple weighted sum operation.

Unfortunately, such a fusion way would fail to form reasonable
results when the source images under two extreme exposure conditions
as shown in Fig. 1(e). Also, when the source images or some regions
are all under poor exposure conditions, it will be not able to recall rich
details, as only information from the original source image is computed.
In other words, the techniques along this line do not make full use of
the information existing in the images. Besides, several works [10,30]
attempt to convert the unsupervised setting into a supervised one1 by
employing the best fused images from different existing methods as
the pseudo ground truths. The shortcomings inherited from candidate
methods are not fundamentally resolved, and thus the performance is
restricted although improved, as shown in Fig. 1(g). Moreover, none of
the mentioned methods can perform correction or enhancement from
single images like ours (see Fig. 1(c) and (d)).

1 Here, we argue that, due to the enhancement nature, it is a bit problematic
to handle the MEF task with somehow constructed pseudo ground truth, which
becomes a restoration task.
250
Fig. 2. The pipeline of our proposed DPE-MEF. D.E.Ref. denotes the detail en-
hanced reference, DEM and CEM represent the detail enhancement module and color
enhancement module, respectively.

Another point that needs to be concerned is the visual aesthetics
of fused images. Among diverse factors, we observe that the color
plays a crucial role. Most of existing MEF approaches first convert the
RGB color-space of images to a luminance and chrominance separation
one, then execute fusion strategies only on the luminance channel.
But, in such a way, the color of fused images is often distorted and
unrealistic, because of ruined color information of badly-exposed im-
ages and/or the nonlinear relationship between color appearances and
different exposures. As analyzed above, two key questions to generating
high-quality multi-exposure image fusion results arise:

1. How to exploit contents as detailed as possible from given source
images?

2. How to recover visually pleasant and realistic colors for fused results?

This study is to answer the above questions.

4. Deep perceptual enhancement for MEF

This section introduces a network called DPE-MEF to enhance
the perceptual quality of fused images in an unsupervised setting.
The blueprint of DPE-MEF is schematically illustrated in Fig. 2. As
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Fig. 3. The processing procedure for detail enhanced reference image generation.
discussed, the network should simultaneously take care of the informa-
tiveness and the visual aesthetics. From the perspective of functionality,
we logically partition the entire network into two subnets, i.e., detail
enhancement module and color enhancement module, according to the
two key questions. By the partition, the original problem is decoupled
into two smaller ones, and thus the complexity is considerably reduced.
In addition, it is natural to convert the working color-space from RGB to
YCbCr, as, compared to the RGB color-space, the YCbCr can effectively
separate the brightness and texture (Y channel, the luma component)
from the color (Cb and Cr channels, the chroma component). The detail
enhancement and color enhancement can be respectively executed on
the luma and chroma components, which well fit our design. In what
follows, we will detail the two modules.

4.1. DEM: Detail enhancement module

Let us now concentrate on the unsatisfied detail issue of under-
exposed and over-exposed images. For under-exposed images, the high
dynamic range information is squeezed in the limited ranges, while
for over-exposed ones, the information is upper shifted and somewhere
truncated, both of which lead to low contrast and ruined details. Since
there is no ground-truth image can serve as the optimization target in
multi-exposure fusion task, the core mission is to find a way to fully
mine the information within the source images, enhance contrast and
save details, so as to provide guidance for the optimization of DEM
network.

4.1.1. Detail enhancement rule
Given an image 𝐼 , a global gain can be easily obtained by 𝐼𝛼 = 𝛼 ⋅ 𝐼

with the exposure adjustment ratio 𝛼. The image is upgraded into a
higher exposure (brighter) level with 𝛼 > 1, while being degraded into
a lower (darker) one with 𝛼 < 1. Please note that the illumination of
different areas in the same scene could greatly vary in an image. There
may exist over-exposed, proper-exposed and under-exposed regions at
the same time. Through globally tuning 𝛼 > 1, although the under-
exposed areas will be brightened, the originally proper-exposed parts
will turn out to be over-exposed due to the expression limit of digital
images. In other words, hardly an optimal 𝛼 can be found under the
circumstances. Hence, a locally adaptive rule is desired.
251
Inspired by the Retinex theory [34], an image can be decomposed
into two layers, say albedo and shading, or reflectance and illumina-
tion. In this work, we alternatively decompose 𝐼 in the form of 𝐼 =
𝑅◦𝐸, where 𝑅 and 𝐸 represent scene detail and exposure2 components,
respectively. The operator ◦ means element-wise product. By a simple
algebraic transformation, we arrive at 𝑅 = 1

𝐸 ◦𝐼 , where 1
𝐸 is the

element-wise reversed 𝐸. For ease of explanation, we denote 1
𝐸 by 𝐴.

Since 𝐴 (or equivalently 𝐸) is spatially variant, so is the adjustment.
Notice that if all the elements in 𝐴 are of the same value, the adjustment
degenerates to the global one.

By assuming that 𝑅 contains the richest details, the adjustment
should work towards seeking an optimal �̂� from 𝐼 . For each location
(𝑖, 𝑗), we determine �̂�𝑖𝑗 based on local area statistics-the local mean 𝜇𝑖𝑗
and the standard deviation 𝜎𝑖𝑗 -within a window of radius 𝑟 surround-
ing 𝐼𝑖𝑗 (denoted by 𝑃𝑖𝑗). The standard deviation can be viewed as a
measurement of detail richness, which is computed by:

𝜎𝑖𝑗 =
1

2𝑟 + 1

√

∑

−𝑟≤𝑝,𝑞≤𝑟
(𝐼𝑖+𝑝,𝑗+𝑞 − 𝜇𝑖𝑗 )2. (3)

As the value of 𝛼 > 1 gradually increases in a pre-defined set {𝛼1,… ,
𝛼𝑇 }, the standard deviation of patch 𝑃 𝛼𝑡

𝑖𝑗 = 𝛼𝑡 ⋅ 𝑃𝑖𝑗 will accordingly
increase to 𝜎𝛼𝑡𝑖𝑗 = 𝛼𝑡𝜎𝑖𝑗 until the appropriate exposure is reached. Then,
as we continue to increase 𝛼, the details will be progressively truncated
due to the over exposure, and thus 𝜎𝛼𝑡𝑖𝑗 drops. Please see Fig. 3 for
illustration. In the sequel, �̂�𝑖𝑗 can be filled out in a similar manner

to Eq. (2), that is
∑𝑇

𝑡=1(𝜎
𝛼𝑡
𝑖𝑗 )

𝑝⋅𝛼𝑡
∑𝑇

𝑡=1(𝜎
𝛼𝑡
𝑖𝑗 )

𝑝 with 𝑝 ≥ 0 having many options. In
this work, we simply choose 𝑝 = ∞, which is to pick the value of
𝛼𝑡 corresponding to the maximal 𝜎𝛼𝑖𝑗 . Having the exposure adjustment
map �̂�, the detail component �̂� can be immediately obtained by �̂�◦𝐼 .
Compared with previous methods only using original source images
themselves to accomplish the fusion, like [13,28,29], our proposed rule
implicitly generates 𝑇 virtual images of different exposures from each
source image. In other words, our adjustment explores much more

2 Different from the concept of camera exposure, 𝐸 reflects how strong the
detail is enhanced.
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information (𝑇 times referred images). Moreover, we do not need to
explicitly process 𝑇 times inputs, thus saving the computational cost.

Bi-directional detail enhancement. As may be noticed, the above
enhancement is merely upward, mainly stretching the contrast for
under-exposed areas. It cannot deal with over-exposed regions, because
reducing the exposure by setting 𝛼 < 1 will always lead to a smaller
standard deviation than the original image. Therefore, the areas will
be maintained as it is. To make better use of the content in relatively
over-exposed areas, we invert the source image by 𝐼𝑖𝑛𝑣 = 1 − 𝐼 . In the
inverted image, the originally over-exposed regions would appear like
underexposed ones. Then, we apply exactly the same enhancement rule
on 𝐼𝑖𝑛𝑣. After calculating the corresponding adjustment map �̂�𝑖𝑛𝑣, the
downward enhancement version is captured as �̂�𝑖𝑛𝑣 = 1 − �̂�𝑖𝑛𝑣◦𝐼𝑖𝑛𝑣.

y the bi-direction detail enhancement, each source image has two
nhanced references, i.e., �̂� and �̂�𝑖𝑛𝑣. Fig. 3 summarizes the whole
rocedure of generating enhanced references from source images. As
an be seen, the squeezed details of under-exposed areas are stretched
ignificantly by the upward enhancement, while those of relatively
ver-exposed are effectively amplified from the downward process.

.1.2. Architecture & loss function
Taking two source images 𝐼1 and 𝐼2 with different exposures as

nput, the DEM is expected to generate a ‘‘good’’ luma component
𝑓 with richer details for the fused image, while the chrominance
omponent will be taken care by the CEM. The function of DEM can
e formulated as follows:

𝑓 = DEM(𝐼1, 𝐼2, 𝜃DEM), (4)

here DEM denotes the DEM network with the parameter 𝜃DEM to
earn. The detailed network architecture of DEM is shown in Fig. 4. We
imply employ a UNet-like [35] encoder–decoder architecture as our
ackbone. Specifically, the DEM consists of two encoders, one of which,
alled the joint encoder, receives both two source images as input and
ims at extracting the correlation features between two source images,
hile the other one encodes each source image separately, tends to
iscover the representative information from each input, namely the
iscriminative encoder. Then, a decoder takes the output features from
he two encoders as input, and receive skip connections of the encoders
t each scale, to generate the final fused luma component.

To guide the training of DEM (in this part, two-exposure fusion
s considered) for producing desired results, the loss function takes
nto account the luminances of source images (i.e., 𝑌1 and 𝑌2) together

with the detail enhanced references from each source luminance via
the bi-direction enhancement rule (i.e., 𝑌1, 𝑌1𝑖𝑛𝑣, 𝑌2, 𝑌2𝑖𝑛𝑣). It involves

= 6 references in total, say �̂�𝑞 ∈ {𝑌1, 𝑌1𝑖𝑛𝑣, 𝑌2, 𝑌2𝑖𝑛𝑣, 𝑌1, 𝑌2}, which
an regularize the learning from different angles. As a result, the loss
unction can be written in the following shape:

DEM =
𝑄
∑

𝑞=1
𝛾𝑞
(

𝓁𝑝𝑖𝑥(�̂�𝑞 , 𝑌𝑓 ) + 𝓁𝜙
𝑝𝑒𝑟(�̂�𝑞 , 𝑌𝑓 )

)

. (5)

he 𝓁𝑝𝑖𝑥 represents the normalized Manhattan distance between each
̂𝑞 and 𝑌𝑓 as:

𝑝𝑖𝑥(�̂�𝑞 , 𝑌𝑓 ) =
1

𝐻𝑊
‖�̂�𝑞 − 𝑌𝑓‖1, (6)

where 𝐻 and 𝑊 are the height and width of the inputs, same as of the
outputs. Further, the 𝓁𝜙

𝑝𝑒𝑟 term denotes the perceptual loss [36] defined
as:

𝓁𝜙
𝑝𝑒𝑟(�̂�𝑞 , 𝑌𝑓 ) =

∑

𝑙

1
𝐶𝑙𝐻𝑙𝑊𝑙

‖𝜙𝑙(𝑌𝑓 ) − 𝜙𝑙(�̂�𝑞)‖1, (7)

where 𝜙𝑙 represents the 𝑙th layer in the perceptual network. 𝐶𝑙, 𝐻𝑙,
𝑊𝑙 are the dimensions of the tensor feature map of the 𝑙th layer. This
work adopts pre-trained VGG-19 Network [37] for perceptual feature
extraction, where 𝑙 indicates the layer index of {𝑐𝑜𝑛𝑣1_1, 𝑐𝑜𝑛𝑣2_1,
𝑐𝑜𝑛𝑣3_1, 𝑐𝑜𝑛𝑣4_1, 𝑐𝑜𝑛𝑣5_1}. As can be seen from Eq. (5), it considers
the guidance from both deep-feature and original-image domains.
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One may tune the hyper-parameters 𝛾𝑞s to select a satisfied learning
configuration of DEM for multiple trials. For making the training free
of tuning, we design an automatic manner to determine the values of
𝛾𝑞 . Suppose the total energy or informativeness of the given references
can be evaluated by 𝛤 =

∑𝑄
𝑞=1 ‖∇�̂�𝑞‖1, where ∇ means the Laplacian

operator. The importance/weight of each �̂�𝑞 can be reflected by the
proportion it occupies from 𝛤 , i.e. 𝛾𝑞 = ‖∇�̂�𝑞‖1∕𝛤 . Note that there
have other metrics for measuring informativeness, and thus for deter-
mining the values of 𝛾𝑞s. In our experiments, this auto way performs
sufficiently well.

4.2. CEM: Color enhancement module

As aforementioned, color information plays an important role in
the subjective evaluation of image quality. Different from other fusion
tasks, such as infrared and visible image fusion and medical image
fusion, the goal of MEF is to produce visually pleasant fusion results.
Therefore, enforcing fusion images to have vivid and realistic colors
can significantly promote the visual performance of an MEF algorithm.
However, in most of existing MEF techniques, the color factor has been
paid little attention. For example, in [13,14,22,28], sources images
are converted to the YCbCr color-space, then fusion strategies are per-
formed only on the Y (luminance) channel, while the fusion rules of Cb
and Cr (chrominance) channels are still designed in a straightforward
form. The most commonly adopted rule is the weighted summation
suggested in [28] as follows:

𝐶𝑓 =
𝐶1(|𝐶1 − 𝜏|) + 𝐶2(|𝐶2 − 𝜏|)

|𝐶1 − 𝜏| + |𝐶2 − 𝜏|
, (8)

here 𝐶1 and 𝐶2 denote the Cb (or Cr) channels of the input image pair,
nd 𝐶𝑓 is the corresponding fused chrominance channel. The value of
is often set to 128.

However, when the source images are badly exposed, the color in-
ormation may be interfered or even ruined due to the limited quality of
igital devices. In addition, the color under different lighting conditions
s not consistent. Under the circumstances, the color obtained directly
y weighted summation will be unreasonable. To mitigate this issue, we
ustomize a module called color enhancement module (CEM). It aims
o learn the color mapping from the target (fused) luminance together
ith the source images to a suitable chrominance for the fused image.

The CEM is expected to infer the chrominance most suitable for
he fused luminance (generated from DEM), by taking the whole in-
ormation of two source images (both the luminance and chrominance
omponents), and the target luminance as input, as follows:

𝐶𝑏𝑓 , 𝐶𝑟𝑓 ] = CEM(𝐼1, 𝐼2, 𝑌𝑓 , 𝜃CEM), (9)

here CEM denotes the CEM network with the parameter 𝜃CEM to
earn. The CEM is set as a joint encoder–decoder structure with 4-layers
n each, to explore the color mapping relationship between the input
mages, as shown in Fig. 5.

In real situations, there are no color ground truths for the fused
mages. This is to say, we cannot execute the training by this means.
ut notice that we have multiple images with different exposures for
scene. These images are genuinely captured by cameras, which pro-

ide relatively proper and realistic color information at corresponding
uminance conditions. For the sake of training the CEM to infer colors
or given luminances, we alternative resort to the existing real data.
o be concrete, three images of each sequence are randomly selected,
hen feed two of the selected images together with the luminance of
he third image into the CEM. The chrominance component of the third
mage naturally serves as the reference (𝐶𝑏3 and 𝐶𝑟3). By this means,
he CEM can be trained by minimizing the gap between the estimate
nd the reference. In this work, we simply adopt the 𝓁1 (Manhattan)
istance to measure the difference as:

= ‖𝐶𝑏 − 𝐶𝑏 ‖ + ‖𝐶𝑟 − 𝐶𝑟 ‖ . (10)
CEM 𝑓 3 1 𝑓 3 1
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Fig. 4. The architecture of detail enhancement module. The numbers indicate the channel amounts.
Fig. 5. The architecture of color enhancement module. The numbers indicate the channel amounts. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
As can be observed, the training of CEM can be also free of parameter
tuning. Of course, one can adjust the weights between the two terms.
But, considering the definitions of Cb (blue relative to green) and Cr
(red relative to green), we appeal to treat them equally.

5. Experimental validation

5.1. Implementation details

The training and evaluation of the proposed DPE-MEF are carried
out on the SICE dataset [38], which provides 589 multi-exposure image
sequences of both indoor and outdoor scenes. The images in each
sequence are taken by consumer grade cameras and are well-aligned.
We randomly select 489 sequences for training, while the rest 100
sequences for testing. We choose image pairs with large exposure
difference from each sequence to form the test set, since they are
more challenging and could better evaluate the ability of an MEF
algorithm in extracting details and maintaining the global structure.
Our framework is implemented in PyTorch. The training and testing
for involved learning-based competitors are carried out all on an Nvidia
2080Ti GPU. Our DEM and CEM are trained separately thanks to the
logical partition.

We randomly select 2 and 3 pictures from each exposure sequence
to train DEM and CEM, respectively. The training images are resized
to the size of 512 × 512. For the two modules, the batch size is set
to 32 and the patch size is set to 128 × 128 with data augmentation
performed (random flipping, rotating, resizing and cropping). We use
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the ADAM solver [39] to optimize the network, with default parameters
and fixed learning rate 1𝑒−4. In the training phase, we set the radius 𝑟
of window to 5, and uniformly employ the pre-defined set {𝛼1,… , 𝛼𝑇 }
via varying 𝜁𝑡 in the manner of 𝛼𝑡 = 2𝜁𝑡 . Please note that in some areas
with extreme exposures, the information has been completely lost, even
contains only noise information. For this kind of area, setting a large
exposure enhancement ratio may still not reach a desired exposure, and
will significantly increase the noise. Therefore, we empirically appoint
𝜁𝑡 ∈ [0, 6] with an interval of 0.01, so as to avoid the negative impact of
excessive enhancement. The bi-directional enhancement process is no
longer required in the testing phase.

5.2. Performance evaluation

To demonstrate the advantages of the proposed DPE-MEF, we
compare it with 9 competitors, including Mertens [22], GFF [23],
DSIFT [17], MEF-Net [13], FMMEF [3], DeepFuse [28], U2Fusion [14],
IFCNN [30] and MEF-GAN [10]. Among these methods, Mertens,
GFF, DSIFT and FMMEF are traditional methods; DeepFuse, MEF-Net
and U2-Fusion are unsupervised deep learning methods; IFCNN and
MEF-GAN are supervised deep learning approaches.

5.2.1. Qualitative comparison
Figs. 6–9 provide visual comparisons on several typical image se-

quences. As can be seen from the figures, though the source images
have large exposure gaps, our results can still maintain promising
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(I) Input 1 (a) DSIFT [17] (b) GFF [23] (c) DeepFuse [28]

(II) Input 2 (d) FMMEF [3] (e) MEF-Net [13] (f) MEF-GAN [10]

(g) IFCNN [30] (h) Mertens [17] (i) U2Fusion [14] (j) Ours

Fig. 6. Qualitative comparison on image pair 1. Please see zoomed-in patches for details. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
overall structures, and are adjusted to proper exposure levels. However,
results from competitive methods, especially the traditional and weight
map based ones, lose the consistency of the global structure and appear
obvious artifacts. For example, in Fig. 7, results of (a), (b) and (e) suffer
from noticeable brightness transition artifacts, while DL-based methods
including (c), (f) and (i) fail to find a proper brightness for the grassland
region.

Our fusion results are of high quality with enriched details, while
some comparison methods, especially the deep learning-based methods
like (f), are relatively blurry. The blur effect of MEF-GAN can also
be found in quantitative comparisons. For example, its results in the
metrics related to detail and gradient such as average gradient (AG)
and edge intensity (EI), are obviously lower than other comparison
methods. On the contrary, the contrast of the results of (f) is somewhat
over-enhanced, and introduced some textures that do not exist in the
source images (e.g. the artifact texture around the edge of branches in
Fig. 6(g)).

Halo artifact is a widespread problem in the fusion results of existing
methods, which has a great impact on the visual realism of fused
images. In our concern, the appearance of halo artifacts in existing
methods is mainly caused by two reasons: (1) Patch-based fusion strat-
egy. For either patch-based traditional fusion method or deep learning
fusion methods optimized by patch-based evaluation metrics (such as
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MEF-SSIM), the inaccuracy caused by patches overlap at the edges of
the image is the culprit of halo artifacts. Since the proposed method
does not adopt patch-based fusion strategy, it can effectively alleviate
the halo caused by this reason; (2) Inaccurate pseudo ground truths
with halo artifacts. The existing supervised deep learning methods
usually use the optimal fusion results generated by existing methods
as ground truths to perform training. Obviously, there may exist halos
in pseudo ground truths due to reason 1, and the halos may migrate to
the results of these supervised methods. Moreover, because supervised
methods actually turn the MEF problem into an image restoration
problem, the better restoration performance will even aggravate this
situation. Since the optimization goal of the proposed method is ob-
tained by mining the information within source images themselves and
do not need pseudo ground truths, our method can also basically avoid
halo artifacts caused by this reason. Therefore, our method alleviates
the halo issue to a great extent and brings higher visual quality.

Owe to the color enhancement module, our results have more
realistic and vivid colors even when the original images lack of color
information due to extreme exposures, while results of competitors may
suffer from the pale or unreal color issue, because of the absence of
specific treatment on the color information. For example, in Fig. 6, the
color information of the forest in the source images is ruined due to
improper exposure, but in fact it is possible to infer the color of the
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(I) Input 1 (a) DSIFT [17] (b) GFF [23] (c) DeepFuse [28]

(II) Input 2 (d) FMMEF [3] (e) MEF-Net [13] (f) MEF-GAN [10]

(g) IFCNN [30] (h) Mertens [17] (i) U2Fusion [14] (j) Ours

Fig. 7. Qualitative comparison on image pair 2. Please see zoomed-in patches for details. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
forest from the source images. Compared to the pale color obtained by
traditional weighted summation method, the color corrected by CEM is
more visually striking. The superiority of color can also be seen clearly
from the sunset region in Fig. 7 and the sky in Fig. 8.

To further demonstrate the performance of our color enhancement
module, we show more results in Fig. 10. The luminance of the fused
images is obtained by DEM, while the color is obtained in different
ways. Images in column (c) are results by the traditional weighted
summation method, and in column (d) are results by CEM. As can be
seen, due to the serious improper exposure of the original image, the
color information in the image is very limited, thus the color obtained
by the traditional weighted summation is relatively pale (please see
color of the jungle in row 2, plate in row 3, sky in row 4) or deviated
from the proper color (see sky color in row 1, palette in row 3). In
contrast, the color fitted by our CEM is more vivid and realistic.

5.2.2. Quantitative comparison
Until now, there is no generally accepted optimal evaluation metric

for MEF. In current works, MEF-SSIM is the most commonly used
evaluation measurement, but as analyzed in Section 3 and in [10],
it also has shortcomings, and is not sufficient to fully reflect the
image quality of fusion images. In order to objectively evaluate the
fusion algorithms more comprehensively, we adopt 8 metrics from
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different perspectives, including Average Gradient (AG) [40], fusion
metric proposed by Chen et al. (𝑄𝐶𝑉 ) [41], Edge intensity (EI) [42],
Correlation Coefficient (CC) [43], Cross Entropy (CE) [44], Peak Signal-
to-Noise Ratio (PSNR), Spatial Frequency (SF) [45], and MEF-SSIM [9].
Specifically, AG quantifies the gradient information of the fused image.
𝑄𝐶𝑉 is a human vision system (HVS)-based fusion metric, which eval-
uates the quality of a fused image by dividing it into different local
regions and transforming into the frequency domain, then measures
the quality according to a human contrast sensitivity function (CSF).
EI measures the sharpness of the edge in the fused image, CC cares
the linear correlation between the fused image and source images,
while CE considers the information differences between source images
and fused image. PSNR is the ratio of peak value versus noise in
the fused image, representing the distortion in the fusion process. SF
measures the gradient distribution of an image. MEF-SSIM focuses on
the structural similarity between the fused image and source images.
For all the mentioned metrics except CE and 𝑄𝐶𝑉 , larger values indicate
better performance. As for CE and 𝑄𝐶𝑉 , smaller values mean better
performance.

We first offer the overall comparison in Table 1, and then give a
more detailed per-image comparison on Fig. 11. It can be seen from the
table that the results of our method achieve top-3 performance in terms
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(I) Input 1 (a) DSIFT [17] (b) GFF [23] (c) DeepFuse [28]

(II) Input 2 (d) FMMEF [3] (e) MEF-Net [13] (f) MEF-GAN [10]

(g) IFCNN [30] (h) Mertens [17] (i) U2Fusion [14] (j) Ours

Fig. 8. Qualitative comparison on image pair 3. Please see zoomed-in patches for details. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
of all the metrics from different aspects, which verifies the effectiveness
of our proposed technique.

The proposed method achieves the best value in 𝑄𝐶𝑉 , which says
that our results are more consistent with human perception. The sec-
ond best value is obtained by DPE-MEF in EI, SF and AG, indicating
our method can generate fusion results with richer details and edge
information. In the official implementation of IFCNN [30], the authors
use CLAHE [46] as a post-processing step to further improve the
performance of the algorithm. Here we give both quantitative results
of IFCNN with and without CLAHE as post-processing. Note that these
feature-based indicators may be also high due to the influence of noise,
but by observing the visual quality of the fused images, we can see that
the high values of our method are not caused by this case. The second
best and third best values are obtained in other metrics, which verifies
our results are close to the source images in content and structure.
From detailed per-image comparison on different metrics in Fig. 11, we
can see that our method reaches a stable and satisfactory performance
on different images, which further reveal the robustness and wide
applicability of our method.

Further, the comparison in terms of algorithm efficiency is given
in Table 2. The DL-based methods are tested on an Nvidia GTX 2080Ti
GPU, and the traditional methods are tested on Intel I7-8750H CPU. We
can observe that our method is remarkably efficient (the second best
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result) among all competitors. We attribute the high time efficiency
of the proposed method to two reasons. First, the backbone of DPE-
MEF is a simple UNet-like encoder–decoder structure that operates
on smaller-size features in intermediate layers. Compared to other
network structures that stack more CNN layers to extract features at
the original size of source images, the downsample–upsample struc-
ture usually takes less time in a single feedforward process. Second,
DPE-MEF can perform end-to-end fusion without additional pre-/post-
processing steps, which further improves the time efficiency. Although
DPE-MEF expands the number of features, resulting in a larger model
size than other methods, this setting leads to lower GPU utilization
as the size of features in intermediate layers is reduced. Note that
when resources are limited, the number of feature channels in the
network can be further reduced, and satisfactory fusion results can still
be obtained. The fastest method MEF-Net [13] promotes the efficiency
by downsampling the images and then performing operations on the
downsampled images, while DPE-MEF performs fusion at original size
to ensure the fusion quality. Our method can achieve real-time (over
60 pairs per second) fusion for 720p image pairs, which significantly
boosts the practicability.
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(I) Input 1 (a) DSIFT [17] (b) GFF [23] (c) DeepFuse [28]

(II) Input 2 (d) FMMEF [3] (e) MEF-Net [13] (f) MEF-GAN [10]

(g) IFCNN [30] (h) Mertens [17] (i) U2Fusion [14] (j) Ours

Fig. 9. Qualitative comparison on image pair 4. Please see zoomed-in patches for details.
Table 1
Quantitative comparison on the SICE dataset in terms of various metrics. The sign (↓) indicates that the smaller the value, the better the performance. The top
3 results are highlighted in red, green and blue, respectively.
Methods AG 𝑄𝐶𝑉 (↓) EI CC CE (↓) PSNR SF MEF-SSIM

Mertens [22] 4.8974 282.086 47.731 0.9438 3.2887 58.788 15.420 0.9003
DSIFT [17] 6.5190 1225.778 63.486 0.5769 2.3745 58.140 20.704 0.8301
GFF [23] 7.0395 1468.066 68.533 0.5659 3.5089 58.035 22.419 0.8266
FMMEF [3] 7.0923 912.832 69.151 0.7316 3.3653 58.430 22.642 0.8951
DeepFuse [28] 5.9092 228.444 57.729 0.9468 3.3518 58.685 19.094 0.8874
IFCNN [30] 11.4420 405.682 108.310 0.8874 3.4026 58.414 34.779 0.9017
IFCNN (w/o CLAHE) 6.2467 295.671 58.669 0.9329 2.685 58.715 20.641 0.8928
MEF-Net [13] 7.6236 590.068 74.281 0.7097 3.5324 58.266 24.547 0.9129
MEF-GAN [10] 5.9652 337.256 61.759 0.9235 3.0703 58.404 16.946 0.8712
U2Fusion [14] 7.1711 239.052 72.584 0.9394 3.6110 58.569 22.322 0.8199
Ours 8.5952 212.027 79.692 0.9436 2.8863 58.596 27.508 0.9058
5.3. Ablation study

In DEM module, we optimize the network parameters by comput-
ing the Manhattan distance between the fused luminance with the
references on both original images and features. In this section, we
give more results under different settings on the loss terms and used
references, to verify the rationality of our design.

Ablation on different loss combinations. We present the results
trained under different loss combinations in Fig. 12. For the pixel-level
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constraint 𝓁𝑝𝑖𝑥, we evaluated two specific variants, one is Manhattan
distance (denoted as 𝓁𝓁1

𝑝𝑖𝑥), the other is Euclidean distance(denoted as
𝓁𝓁2
𝑝𝑖𝑥). As can be seen, in the result trained by adopting only 𝓁𝑝𝑖𝑥, due

to the tight constraint, the details might be slightly over enhanced, and
some artifacts appear around edges. In results trained by using only
𝓁𝜙
𝑝𝑒𝑟, the overall structure and brightness are well preserved, but the

fine-grained details are lost somewhere due to the loose restriction.
Jointly optimizing 𝓁𝑝𝑖𝑥 and 𝓁𝜙

𝑝𝑒𝑟 (finally used in DPE-MEF), as shown
in (g), could balance the two terms well and capture the fusion result
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(a) Input 1 (b) Input 2 (c) Colored by weighted-addition (d) Colored by CEM (ours)

Fig. 10. Visual results of CEM. Given the fusion luminance from DEM, the column (c) is colored by the traditional weighted-addition method in Eq. (8), and (d) is colored by
our CEM. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 2
Efficiency comparison on 720p test image pairs (unit: second for runtime, MB for model
size and GPU usage). The best result in runtime is highlighted in red and the second
best is in blue.

Method Runtime Platform Model size GPU usage

Mertens [22] 0.6547 MATLAB (CPU) – –
DSIFT [17] 2.2555 MATLAB (CPU) – –
GFF [23] 1.3554 MATLAB (CPU) – –
FMMEF [3] 1.1942 MATLAB (CPU) – –
DeepFuse [28] 0.1828 TensorFlow (GPU) 0.34 3137
IFCNN [30] 0.0475 PyTorch (GPU) 0.34 4291
MEF-Net [13] 0.0082 PyTorch (GPU) 0.33 757
MEF-GAN [10] 0.8484 TensorFlow (GPU) 20.0 7809
U2Fusion [14] 0.7462 TensorFlow (GPU) 2.52 7759
Ours 0.0164 PyTorch (GPU) 51.9 2507

with better details and global structure. For the specific setting of 𝓁𝑝𝑖𝑥,

the result constrained using Manhattan distance will be sharper, while

the result using Euclidean distance may occur relatively smooth details,
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which can be seen from the comparison between Fig. 12(d) and (c).
Therefore, better fusion results can be obtained by using Manhattan
distance as pixel-level constraint, then combining loose perceptual loss
term to provide feature level constraint, which is our final setting. The
qualitative metrics of ablation experiments are shown in Table 3. From
the table, we can see that the result trained with only 𝓁𝓁1

𝑝𝑖𝑥 has higher
values in edge and gradient related metrics, while the result of only
𝓁𝜙
𝑝𝑒𝑟 is lower, which is consistent with the analysis above.
Ablation on different reference combinations. We evaluate the

effect of setting 𝑌𝑞 with different combinations in Fig. 13. Remind
that we set 𝑄 = 6 in the final version of DPE-MEF (result shown
in (f)), we alternatively give results without considering upward en-
hanced references {𝑌1, 𝑌2} in (c), without downward enhanced ref-
erences {𝑌1𝑖𝑛𝑣, 𝑌2𝑖𝑛𝑣} in (d), and without source images {𝑌1, 𝑌2} in
(e).

The significance of upward enhancement can be viewed in the
comparison between (c) and other results with upward enhancement.
Without the upward enhancement references {𝑌1, 𝑌2}, the details of the
dark regions (e.g. the door area) are not handled well and the overall
brightness is dim.
Table 3
Quantitative comparison on different settings of loss and reference sequence combinations. The sign (↓) indicates that the smaller the value, the better the
performance. The best and second best results are highlighted in red and blue.

AG 𝑄𝐶𝑉 (↓) EI CC CE (↓) PSNR SF MEF-SSIM

𝓁𝓁2
𝑝𝑖𝑥 6.2078 310.771 58.245 0.9386 2.4292 58.664 19.931 0.8891

𝓁𝓁1
𝑝𝑖𝑥 9.4484 261.877 86.816 0.9430 3.2552 58.434 31.860 0.9116

𝓁𝜙
𝑝𝑒𝑟 7.5455 209.729 70.588 0.9019 2.1503 58.470 24.245 0.9387

w/ 𝓁𝓁2
𝑝𝑖𝑥 + 𝓁𝜙

𝑝𝑒𝑟 6.8884 283.636 64.706 0.9072 2.4602 58.623 22.346 0.9434
w/o {𝑌1 , 𝑌2} 7.5096 213.747 69.596 0.9270 2.6196 58.591 24.701 0.8358
w/o {𝑌1𝑖𝑛𝑣 , 𝑌2𝑖𝑛𝑣} 6.7154 234.166 63.281 0.9015 2.2251 58.429 21.608 0.9563
w/o {𝑌1 , 𝑌2} 7.8843 306.773 71.997 0.9381 2.8837 58.481 25.948 0.8603
ours 8.5952 212.027 79.962 0.9436 2.8863 58.596 27.508 0.9058
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Fig. 11. Detailed per-image quantitative comparisons in terms of different metrics.
(a) Input 1 (b) Input 2 (c) 𝓁𝓁2
𝑝𝑖𝑥 (d) 𝓁𝓁1

𝑝𝑖𝑥 (e) 𝓁𝜙
𝑝𝑒𝑟 (f) 𝓁𝓁2

𝑝𝑖𝑥 + 𝓁𝜙
𝑝𝑒𝑟 (g) 𝓁𝓁1

𝑝𝑖𝑥 + 𝓁𝜙
𝑝𝑒𝑟

(ours)

Fig. 12. Ablation experiments on different loss combinations.
In contrast, the effectiveness of downward enhancement can be
observed from the comparison between (d) and other results. Without
the downward references {𝑌1𝑖𝑛𝑣, 𝑌2𝑖𝑛𝑣}, the details in brighter areas (e.g.
the white wall region) cannot be well corrected, resulting in a poor
sense of hierarchy, and the whole fused image is slightly over-exposed.

To make full use of existing information, and considering the char-
acteristics of the fusion task, we add source images to the reference
sequence. The fusion results without the source images {𝑌1, 𝑌2} as refer-
ence are shown in (e). The difference between using the source images
(f) and not using them (e) is mainly on the extent of enhancement.
With the source images as guidance, the fusion results will not deviate
from the exposure of source images too much while fully extracting
the details of the source image, which is more consistent with the
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general expectation of fusion process, that is to gather information on
the original scale of the source images. Without the source images, since
the fusion process is only guided by the detail enhanced references, the
fusion results (e) will be enhanced to a greater extent, which can be
seen more clearly from the bottom row of Fig. 13.

5.4. Fusion under various conditions

Due to the high (extremely high in some situations) dynamic range
of real scenes, the exposure ratio difference of the source images cap-
tured under different settings may vary in a very large range, making
it difficult to set a proper exposure bracketing. In this part, we gives
more results fused from source images with different exposure ratios
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(a) Input 𝐼1 (b) Input 𝐼2 (c) w/o {𝑌1, 𝑌2} (d) w/o {𝑌1𝑖𝑛𝑣, 𝑌2𝑖𝑛𝑣} (e) w/o {𝑌1, 𝑌2} (f) Full set

Fig. 13. Ablation experiments on different reference sequence combinations. The top row shows the fusion results in the case of one overexposed and one under-exposed, the
middle row and bottom row show results in the case of both source images over-exposed and under-exposed, respectively.
Fig. 14. Fusion results of source images under different exposure conditions, and results of multiple image fusion. Our method can produce satisfactory results under different
exposure ratios, and can further improve the visual effect by fusing multiple images if available.
in Fig. 14. As can seen from the source image sequences, because of
the large difference of brightness in the scene, it is difficult to obtain a
dense image sequence with small exposure intervals, which may leads
to extremely long exposure sequence. Also it is hard to determine which
images could form the optimal exposure bracketing selection. In this
case, we test different source images pairs, and perform fusion on them.
The results show that DPE-MEF can perform high-quality fusion in
different exposure cases, which verifies the robustness of our design.
Our method also relaxes the strict requirement on the quality and
quantity of source images, which further proves the applicability of our
method. Moreover, if more source images are available, the proposed
DPE-MEF could fuse them sequentially, and further improve the fusion
quality, as shown in boxed regions in Fig. 14.

The main task of this work is the fusion of multiple exposure images.
But recall that the design of our detail enhancement rule is in fact not
limited to multiple images, it can also be used to optimize the local
exposure of a single image. Therefore, in this part, we demonstrate the
260
potential of our proposed detail enhancement method for processing
single images, which is similar to the ‘‘exposure correction’’ task. A
concise visual comparison with existing exposure correction works,
including histogram equalization (HE) [47], contrast-limited adaptive
histogram equalization (CLAHE) [46], high-quality exposure correction
(HQEC) [48] and zero-reference deep curve estimation (Zero-DCE) [49]
is given in Fig. 15, the top two rows are to correct over exposure,
and the bottom two rows are to correct under exposure. Thanks to
the bi-directional detail enhancement rule, our method can use a same
model to deal with both over exposure and under exposure situations.
As can be seen from the results, our DPE-MEF can effectively correct
the inappropriate exposure areas in the images, enlighten the dark areas
and retrieve the details of the over exposed areas.

6. Conclusion and discussion

In this paper, we have proposed a novel multi-exposure image
fusion method, namely DPE-MEF. We discussed the characteristics of



Information Fusion 79 (2022) 248–262D. Han et al.
(a) Input images (b) HE [47] (c) CLAHE [46] (d) HQEC [48] (e) Zero-DCE [49] (f) Ours-single

Fig. 15. Results on single image exposure correction. The leftmost column shows the input image, the columns (b)–(e) are results of existing methods, while the column (f) shows
our results.
multi-exposure image fusion (MEF) task in detail, and positioned the
goal of MEF task is to generate fusion results with both rich information
and pleasant visual perception. Aiming at the goal, we formed our
DPE-MEF with two sub modules: a detail enhancement module (DEM),
which ensures the detail and structure of the fused image by fully min-
ing the information within the source images, and a color enhancement
module (CEM), which learns the mapping relationship between color
and brightness in various scenes, and could render more vivid and
realistic color for the fused image. We carried out detailed experimental
comparisons and ablation experiments to verify the effectiveness and
rationality of our proposed method, and demonstrated that our method
has promising time efficiency and strong robustness to various scenes.

The current DPE-MEF mainly works on static scenes, that is, the
source images need to be strictly registered. However, due to camera
and object motion, foreground and background misalignment some-
times occur in the exposure sequences, which may lead to the failure
of the static fusion methods to produce satisfactory fusion results.
Therefore, how to extend the proposed method to deal with dynamic
scenes is an import future research direction. In addition, due to the
characteristics of CNN structure, it is hard to adjust the number of input
images during testing for a trained network. How to design a more flex-
ible and effective model structure in order to fuse adjustable numbers
of source images in a single fusion process, is another important aspect
to consider for practical use.
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