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ABSTRACT
Due to slight discrepancy of spatial frequency between the
camera sensor array and sub-pixel layout of LCD monitor,
moiré pattern artifacts appear in various shapes and colours
which seriously degrade the quality of captured images. It is
challenging yet practically crucial to remove moiré artifacts
from a single camera-captured screen image. In this paper, we
propose a dual-domain distilling network (3DNet for short)
to tackle this problem in an end-to-end manner. The 3DNet
consists of a dual-branch student network (a.k.a. demoiréing
network), and two teacher networks. The two branches of s-
tudent network exploit knowledge in both spatial-domain and
frequency-domain for the sake of removing moiré artifacts,
based on the observation that rich image details can be discov-
ered in the frequency-domain while structure information can
be well kept in the spatial-domain. The demoiréing process
of two branches is supervised by the knowledge distilled from
two teacher networks trained for reconstructing clear images
in the spatial and frequency domains respectively. Compre-
hensive experimental results are conducted to demonstrate the
efficacy of our design, and reveal its superiority over state-of-
the-art alternatives.

Index Terms— Moiré Pattern, Demoiréing, Image
Restoration

1. INTRODUCTION

Recording screen-displayed contents using consumer-level
digital devices frequently happens. However, due to inter-
ference between sensor array of camera and sub-pixel layout
of LCD moniter, moiré artifacts usually show up and severely
damage visual quality of captured pictures. These moiré pat-
terns are spatially variant with diverse colour distortion and
irregular shapes. Figure 1 (a) shows two such examples con-
taminated by moiré artifacts. In addition, the moiré pattern
spans a wide range of frequency bands, which may cause con-
siderable overlap between moiré artifact and latent image in-
formation. Moreover, as no explicit physical models are well-
defined for this problem, it is challenging to remove these ar-
tifacts by only observing appearance characteristics of moiré
pattern.

†contributed equally to this work. ∗corresponding authors.

(a) Input image (b) Demoiréing result (c) Ground-truth

Fig. 1. Demoreing results of 3DNet

Recent methods [1][2][3][4][5] treat image demoiréing as
an image restoration problem addressed by CNN-based mod-
els. For instance, Sun et al. [1] proposed a multi-resolution
convolutional neural network, according to the fact that the
moiré pattern spans over a wide range of frequency bands, to
accomplish the task with a large-scale dataset for demoiréing
released. Its follow-ups, with methods [2][5] as representa-
tives, also applied multi-scale based structures to do the job.
Besides, Zheng et al. [5] and Liu et al. [4] adopted the fre-
quency prior, which could distinguish moiré patterns from
natural image patterns better. He et al. [3] introduced addi-
tional labeled data in [1] based on shape, colour, and frequen-
cy characteristics for precise moiré pattern removal. Although
the above-mentioned methods can produce promising results,
knowledge from spatial and frequency domains is barely con-
sidered simultaneously. Alternatively, our method works in
both the spatial and frequency domains in order to make full
use of complementary information from the two domains and
obtain better results. In experiments, the effectiveness of this
strategy will be verified.

This work introduces a dual-domain distilling network to
exploit spatial and frequency prior simultaneously, which is
inspired by the success of the previous dehazing method [6].
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Fig. 2. The overall architecture of proposed framework.

It adopts process-oriented learning mechanism, and builds t-
wo networks, say a teacher network for image reconstruction
and a student network for dehazing. The similarity of fea-
tures between teacher and student networks are measured to
assist the dehazing task. Similarly, our demoiréing framework
also employs the process-oriented learning strategy. We em-
phasize that, different to their work, our framework includes
dual teacher-student pairs specifically designed for two dif-
ferent domains. One teacher is trained for the task of image
reconstruction on clear images in spatial-domain, called “S-
patial Teacher”. The other is trained for frequency-domain
clear image reconstruction named “Frequency Teacher”. The
structures of two teachers are largely similar with each other.
However, please notice that the “Frequency Teacher” replaces
downsampling and upsampling operators by Discrete Wavelet
Transform (DWT) and Inverse Discrete Wavelet Transfor-
m (IDWT), respectively. Our method employ Haar wavelet
transform with level of 2. In terms of the student network, it
is constructed as a dual-branch structure to gain knowledge
from spatial-domain and frequency-domain at the same time.
The learning progress of each branch is guided by the cor-
responding domain teacher through multi-stage features. It
aims at encouraging the student network to learn useful in-
formation for demoiréing from the clear intermediate feature
representation of the teacher network. Figure 1 illustrates the
demoiréing results by our model, from which we can see that
the moiré pattern of input can be removed greatly. The main
contributions of this paper can be summarized as follows:

• We propose a dual-domain network for demoiréing,
which simultaneously considers both spatial-domain
and frequency-domain priors for precisely removing
moiré patterns from a single image.

• Our model introduces the process-oriented learning s-
trategy to guide the moiré pattern removal process, with
a process-oriented loss designed for measuring the sim-
ilarity of features between teachers and students.

• Extensive experiments are carried out to show the ef-
fectiveness of the proposed model compared with other
competitors. Besides, ablation studies are also provided
to reveal the necessity of each component in our design.

2. DUAL-DOMAIN DISTILLING NETWORK

In this section, we will first introduce the dual-domain
progress-guided mechanism of teacher-student strategy. After
that, the details of our design will be presented.

2.1. Dual-Domain Process-Guided Mechanism

The process-oriented learning mechanism was previously ap-
plied in dehazing task by Hong at el. [6] with satisfactory
performance. The learning process of dehazing network is
supervised by the extra network called teacher network in
the feature space. In our task, we build two teacher net-
works to facilitate the training of demoiréing network in t-
wo different domains. As shown in Figure 2, two teach-
ers both constitute of a downsampling module, a backbone
module, and an upsampling module. The backbone mod-
ule contains 6 residual blocks [7]. In the frequency teach-
er network, the downsampling and upsampling modules are
replaced by Discrete Wavelet Transform (DWT) and Inverse
Discrete Wavelet Transform (IDWT) respectively. Two teach-
er networks are trained for clear image reconstruction in spe-
cific domains so that they can provide student networks with
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intermediate feature representation of clear images.
The student/demoiréing network has a similar architecture

as the teacher nets except for the backbone module and the fu-
sion step. As shown in Figure 2, the student network consists
of two branches, i.e. a spatial branch and a frequency branch.
In a few candidate stages of each branch, we encourage their
feature maps as close as possible to the clear feature repre-
sentations of each corresponding teacher network. In order
to naturally control the learning process of students, we relax
the constraints of the shallow stages while enhancing the deep
ones.

2.2. Architecture Design

The dual-domain/dual-branch network takes the advantages
of two different domains, which can complement each other.
In our design, we adopt the structure of two branches for two
different domains and capture their processed outputs sepa-
rately. In the end, we concatenate the two outputs and then
fuse them by a simple 1×1 convolutional operation as the fi-
nal demoiréing result of our proposed framework.

2.2.1. Spatial Branch

As moiré patterns span a wide range of scales in the spatial
domain, we establish each spatial block as a multi-scale archi-
tecture which can process moiré patterns at different scales.
In this paper, we set the spatial block as a 3-scales structure
as shown in Figure 3. The spatial branch of student network
is stacked by 6 such spatial blocks with 64 channels, and each
feature map produced by downsampling. The top branch of s-
patial block processes moiré patterns at the original scale and
the rest two branches at coarser scales. The two downsam-
pling blocks rescale the original input to half and quarter re-
spectively. After that, the three inputs with different scales are
fed into three groups of convolutional layer, followed by the
Rectified Linear Unit (ReLU) to capture the output feature
maps of each branch. The two coarser outputs pass upsam-
pling layers to make their sizes fit the original size of the top
scale. Finally, feature maps from each branch are combined
together as the output of the spatial block.

2.2.2. Frequency Branch

Recent work [4] found that moiré artifacts are more apparent
in certain wavelet subbands, where they can be more easily
removed after the wavelet transform. In order to remove the
moiré artifacts and restore the details of the background im-
age effectively, we introduce a frequency branch to demoiré
network. Each feature map produced by DWT and frequen-
cy blocks contains 48 channels. As shown in Figure 4, there
are 4 residual blocks with ReLU in previous part of frequen-
cy block. Then a channel attention module is applied to the
output feature map of the previous part. The attention module
employs a global average pooling operation followed by two

Fig. 3. The spatial block of proposed framework.

Fig. 4. The frequency block of proposed framework.

fully-connection and a Sigmoid function to learn the weight
of each channel. Finally, each channel of the feature map is
multiplied by the weight, which means the blocks can auto-
matically select the frequency bands that are most useful for
moiré pattern removal through learning.

2.3. Objective Function

Reconstruction loss: For our framework, the training stage
of student network is based on two pre-trained teacher net-
works. Therefore, in the first stage, the two teacher network-
s are trained for clear image reconstruction in both spatial-
domain and frequency-domain to extract abundant feature
representations from clear images. We use L1-distance be-
tween the reconstructed result and the ground-truth as recon-
struction loss, which is in the following shape:

Lrec = ∥frec(Igt; θrec)− Igt∥1 , (1)

where frec(Igt; θrec) denotes the reconstructed result, and Igt
the corresponding ground-truth image. Once the teacher net-
works are well-trained, their weights will be frozen. Then, we
begin to train the student network.
Demoiréing loss: Demoiréing loss measures the distance be-
tween the demoiréing result and its ground-truth, which can
be formulated as follow:

Ldem = ∥fdem(Imoire; θdem)− Igt∥1 , (2)
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where fdem(Imoire; θdem) designates the estimated moiré-free
result from the student network.
Feature Mimicking Loss: Feature mimicking loss consist-
s of two parts including spatial-domain loss and frequency-
domain loss. We introduce the loss to guide the learning pro-
cess of the student network in the feature space. Each part is
defined by a L1-distance between feature maps of each branch
of student network and its corresponding domain teacher net-
work in a few candidate stages. To simplify the formula, we
let the Sm(Imoire) be the m-th layer feature map of input
with moiré pattern in student network, and the Tn (Igt) the
n-th layer feature map of corresponding clear image in teach-
er network. The general formula of feature mimicking loss is
given in the following:

Lgeneral
mim =

∑
(m,n,µ)∈M

µ ∥Sm(Imoire)− Tn(Igt)∥1 , (3)

where m, n, µ stand for the m-layer, n-layer and weight in
the feature mimicking loss of each stage respectively, and M
is a set of chosen triplets. The total feature mimicking loss
includes two parts can be written as follows:

Lmim = Lspatial
mim + Lfrequency

mim . (4)

Feature loss: We adopt the perceptual loss[8] to measure
the high-level feature similarity and achieve satisfied perfor-
mance. The feature loss can be described as the following
formula:

Lfeat =
∑
l∈N

∥Φl(fdem(Imoire; θdem))− Φl (Igt)∥1 , (5)

where Φl(z) is the l-th layer feature map of z from pre-trained
high-level semantic feature extractor network Φ, and N de-
notes a set of chosen layers. In this paper, we adopt VGG-
19[9] that trained on ImageNet for image classification as the
feature extractor network.
Overall loss: During training the student network, the overall
objective function is a combination of demoiréing loss in Eq.
(2), feature mimicking loss in Eq. (4) and feature loss in Eq.
(5). The overall objective function is defined as follows:

Loverall = λ1Ldem + λ2Lmim + λ3Lfeat, (6)

note that the λ1 , λ2 , λ3 are coefficients that balance the three
terms of loss.

3. EXPERIMENTS

Our 3DNet is implemented in PyTorch and runs on one Nvidi-
a RTX2080Ti GPU for 36 hours. In our network, the patch
size is set to 256 and Adam [10] optimizer with the initial
learning rate of 10−4 is used. For training of our student net-
work, the learning rate is reduced by half if training loss does
not decrease for 5 consecutive epochs.

Model w/o PGM w/o BS w/o BF w/o CA Complete
PSNR 36.52 31.81 34.26 34.82 38.05
SSIM 0.985 0.972 0.981 0.982 0.989

Table 1. Ablation study of 3DNet for architecture on LCD-
Moiré dataset. w/o PGM means training without dual-domain
process-guided mechanism. w/o BS means training with on-
ly frequency branch. w/o BF means that only spatial branch
is used to train. w/o CA means training without the channel
attention modules of frequency blocks.

Model DnCNN MSFE DMCNN MBCNN Ours
PSNR 29.08 36.66 36.33 44.04 38.05
SSIM 0.906 0.981 0.980 0.995 0.989

Table 2. Quantitative evaluation results compared with DNC-
NN [12], DMCNN [1], MSFE [2], MBCNN [5].

Model DMCNN MBCNN 3DNet
PSNR 17.53 18.18 18.42
SSIM 0.554 0.648 0.579

Table 3. Quantitative evaluation of generalization ability
compared with DMCNN and MBCNN on randomly chosen
subset of the TIP2018 dataset.

We compare 3DNet with state-of-the-art methods mainly
on the LCDmoiré [11] and TIP2018 [1] datasets and conduc-
t extensive ablation studies to demonstrate the necessity of
each component in the design. The LCDmoiré dataset con-
tains 10,200 synthetic image pairs. There are 10,000 training
image pairs, 100 validation pairs and 100 testing ones. As
the test dataset’s ground truth is not available, the study is
conducted on the validation set in this dataset. To verify the
generalization ability of our network and others, we random-
ly select 100 images from the TIP2018 [1] dataset to evaluate.
In this dataset, clean images come from the ImageNet ISVRC
2012 dataset and contaminated images are captured by dif-
ferent mobile phones of clean images on different computer
screens.

3.1. Ablation Study

To investigate the effectiveness of each component in our
model, we conduct the ablation study on teacher network, s-
patial branch, frequency branch and attention module.
Teacher network: This part explores the effect of the pro-
posed teacher networks. The teacher networks guide the
training process of student network by a feature mimicking
loss which measures the simility of intermediate features of
clear images and demoiréing results. We removed the teach-
er neworks and feature mimicking loss of the 3DNet to dis-
able the guidance of the learning process as a comparison. As
shown in Table 1, the teacher network leads to an improve-
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Fig. 5. Visual comparison of demoiréing results among state-of-the-art approaches including DMCNN [1], MBCNN [5] and
our method on the samples in LCDMoiré dataset.

ment of 1.53dB in PSNR. The residual colored stripes shown
in Figure 6 indicate the importance of the teacher networks.
Spatial branch & Frequency branch: Because the proposed
3DNet is trained with two domains, it is necessary to inves-
tigate demoiréing results without spatial branch or frequency
branch. We cut off the spatial branch and frequency branch
respectively to test the ability of the individual branch in 3D-
Net. Quantitative evaluation results are presented in Table 1.
It turns out that the average PSNR value will decreases about
6.24dB without spatial branch and 3.79dB without frequen-
cy branch. These results effectively testify the impact of the
dual-domain strategy. The results in Figure 6 (c) and (d) vi-
sually reflect the importance of the two-domain branches.
Attention Module: To see the effect of proposed channel at-
tention module, we built and trained a 3DNet without adding
the channel attention module. As shown in Table 1, it turn-
s out that the average PSNR value decreases about 3.23dB.
The reason is that the channel attention module receives more
evidence to choose which channels should be focused on for
moiré pattern removal. Without this channel attention mod-
ule, our network cannot remove the colored stripe well as can
be seen in Figure 6 (e).

3.2. Comparison with Prior Work

In this section, we compare the proposed 3DNet with sev-
eral related models. We choose the widely-used LCDmoiré
dataset to quantitatively evaluate different methods. We com-
pare our approch with DnCNN [12], DMCNN [1], MSFE
[2], and MBCNN [5]. In Table 2, the quantitative compar-
isons are reported. From the numbers, we can observe that
the DnCNN has limited image demoiréing ability compared
to other moiré-specific methods. The MSFE and DMCNN
proposed to remove moiré in a multi-resolution manner can
remove moiré artifacts better than DnCNN. However, these
methods ignore the frequency information which is important
for moiré removal. Our methods can reach the second highest
PSNR, which significantly outperforms DnCNN [12], DM-
CNN(TIP2018) [1], and MSFE [2], but falls behind the M-
BCNN. Figure 6 depicts the visual comparison. Our method
can remove moiré artifacts in some hard examples such as
the first row of Figure 6. Although our 3DNet perform lower
PSNR compared with MBCNN [5], the visual difference be-
tween our method and MBCNN is hardly viewed in most ex-
amples. We notice that our model is of 16.0 Mb, significantly
smaller than 54.5 Mb of MBCNN. We also test the general-
ization ability of our model in comparison with DMCNN [1]
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(a) Input image (b) w/o PGM (c) w/o BS

(d) w/o BF (e) w/o CA (f) Complete

Fig. 6. Visual comparison among 3DNet and versions with
modifications on LCDmoiré dataset.

and MBCNN [5]. All the involved competitors are trained
on the LCDMoiré dataset but test on the TIP2018 dataset.
We randomly choose 100 image pairs of contaminated with
moiré patterns and their corresponding clear ground-truth in
the TIP2018 dataset. All the above methods are tested on
these chosen images and the quantitative evaluation result-
s are shown in Table 3. Although our model achieved the
second best SSIM result which is 0.069 lower than the best,
our 3DNet beats the MBCNN by 0.24dB in terms of PSNR.
Comparing with the result in LCDmoiré dataset, the PSNR of
MBCNN [5] is 5.9dB higher than our 3DNet.

4. CONCLUSION

This paper designed a network, namely 3DNet, to remove
moiré patterns by considering both the spatial domain and
frequency domain priors simultaneously. Moreover, we pro-
posed a dual-domain process-guided learning mechanism for
extracting information of clean images from teacher network-
s. This information could guide the image demoiréing net-
work in the training phase. From extensive experimental re-
sults, we can see that our approach achieves overall promis-
ing results. In addition, in Figure 7, we present several results
with relatively low PSNRs by our method compared with M-
BCNN. The top row shows the ground truth and the bottom
gives our results with PSNR and SSIM, from which we can
hardly observe the visual difference between our results and
their corresponding ground-truths.
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Fig. 7. The first row displays three ground-truth images,
while the second row gives the recovered results by our
method. These results are of relatively low PSNRs but of un-
aware difference compared with the ground-truths.
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