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ABSTRACT
Co-saliency detection is a newly emerging research topic in
multimedia and computer vision, the goal of which is to ex-
tract common salient objects from multiple images. Effec-
tively seeking the global consistency among multiple images
is critical to the performance. To achieve the goal, this pa-
per designs a novel model with consideration of a hierarchi-
cal consistency measure. Different from most existing co-
saliency methods that only exploit common features (such as
color and texture), this paper further utilizes the shape of ob-
ject as another cue to evaluate the consistency among com-
mon salient objects. More specifically, for each involved im-
age, an intra-image saliency map is firstly generated via a
single image saliency detection algorithm. Having the intra-
image map constructed, the consistency metrics at object level
and superpixel level are designed to measure the correspond-
ing relationship among multiple images and obtain the inter
saliency result by considering multiple visual attention fea-
tures and multiple constrains. Finally, the intra-image and
inter-image saliency maps are fused to produce the final map.
Experiments on benchmark datasets are conducted to demon-
strate the effectiveness of our method, and reveal its advances
over other state-of-the-art alternatives.

Index Terms— Co-saliency detection, shape attribute,
multi-feature similarity, hierarchical consistency measure

1. INTRODUCTION

Saliency detection is to discover the most visually salient ob-
jects from an image. It has been widely applied as the first
step for a variety of multimedia and computer vision tasks,
such as image segmentation [1], visual tracking [2], and im-
age compression [3]. Over past years, the image co-saliency
detection has been an emerging and rapidly growing research
issue, which aims to capture common and salient objects or
regions from a group of images [4]. As the extension of the
traditional single image saliency detection, the co-saliency
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Fig. 1: Visual comparison of co-saliency maps. (a) and (b) are
inputs and corresponding ground-truth in the iCoseg dataset.
(c) and (d) show co-saliency maps by [5] and [7], respectively.
(e) gives the single saliency maps generated by [8]. (f) is our
final results.

detection possesses an additional and significant property, i.e.
all of co-salient objects should be similar in appearance. In-
tuitively and factually, due to this property, co-saliency de-
tection is more useful in many tasks, for instance object co-
segmentation and video foreground detection [5], object co-
localization [6], to name just a few. Different from single
saliency detection methods, which only rely on the contrast
or uniqueness to compute the saliency map in an individual
image, co-saliency detection also leverages the consistency
of co-salient objects.

To model the inter-image correspondence among images,
many different methods have been designed. Fu et al. [5] for-
mulated the inter-image relationship as a clustering process.
Zhang et al. [9] captured the inter-image constraint through
a Bayesian framework. In this paper, we formulate the inter-
image constraint as a consistency matching problem. Two hi-
erarchical consistency measures are proposed to evaluate the
object-level similarity and superpixel-level similarity, respec-
tively. The object-level consistency metric attempts to dis-
cover some reliable salient proposals based on multi-feature
matching. The superpixel-level consistency metric is used to
further refine the proposals and generate the inter saliency
map.

Co-salient objects often show similar appearance, such as
color and texture. However, most of existing co-saliency de-
tection algorithms ignore an important appearance attribute,
i.e. shape, when exploring the inter-image constraints. As
shown in Fig.1(b), the co-salient objects have a similar shape.
The shape feature owns powerful discrimination capability
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that is relatively stable to changes in lighting conditions.
Therefore, we introduce the shape attribute into the object-
level consistency metric to augment the evaluation of feature
similarity.

In summary, the main contributions of the proposed
method are as follows: (1) The hierarchical consistency mea-
sures are proposed to capture the inter-image correspondence
at different scales; (2) The shape attribute is introduced into
the consistency metric to augment the evaluation of feature
similarity; (3) Extensive experimental evaluations are carried
out to show that the proposed method achieves a superior
performance, outperforming the current state-of-the-art ap-
proaches.

2. RELATED WORK

The goal of co-saliency detection is to discover the common
and salient objects from a given image group. The existing
co-saliency detection methods [4, 5, 9–12]can be roughly di-
vided into three categories: bottom-up methods, fusion-based
methods and learning-based methods.

Early attempts usually employ some low-level features to
generate intra saliency and inter saliency. Li and Ngan [10]
constructed a co-multilayer graph to compute the inter-image
consistency and combined the single-image saliency map to
generate the pair-wise co-saliency maps. Fu et al. [5] pro-
posed a cluster-based approach, taking into account three vi-
sual attention cues to measure the cluster-level co-saliency.
Liu et al. [13] provided a hierarchical segmentation based co-
saliency model, which integrates the global similarity, intra-
saliency and object prior to generate the co-saliency map.

Fusion-based methods aim to mine the common informa-
tion from a set of single image saliency maps. Cao et al.
[4] explored low-rank constraint to obtain the self-adaptive
weights. Based on these weights, multiple saliency maps are
fused to produce the co-saliency map. Huang et al. [14] con-
structed a multiscale superpixel pyramid and jointed low-rank
analysis to obtain the fused saliency map, and then introduced
a GMM-based co-saliency prior to generate the co-saliency
maps. Tsai et al. [15] proposed a segmentation guided lo-
cally adaptive proposal fusion for co-saliency detection. They
formulated co-saliency and co-segmentation as an energy op-
timization problem over a graph.

Recently, learning-based methods have become popular
due to their promising performance. Zhang et al. [9] utilized
the high-level semantic features extracted from deep layers of
Convolutional Neural Network (CNN) to represent the region
properties. Then, the co-saliency scores for object proposal
windows are calculated via a Bayesian formulation. In [11], a
self-paced multiple-instance learning framework is proposed
for co-saliency detection. The designed self-learning scheme
can iteratively estimate the appearance of co-salient objects
and refine the generated co-saliency maps.

3. OUR METHOD

In this paper, we propose a simple yet effective co-saliency
detection method. First, the intra-image saliency map for
each image is generated by single image saliency detection
method. Then, a hierarchical process is designed to capture
the corresponding relationship among multiple images. Spe-
cially, the object level consistency score is computed to gen-
erate some reliable salient proposals by using multi-feature
matching algorithms. Based on the obtained results and mul-
tiple constraints, the inter-image saliency map is computed on
the superpixel level. Finally, the intra-image and inter-image
saliency maps are fused by linear weights to generate the final
co-saliency maps.

3.1. Intra-image saliency map

Given N RGB images {Ii}Ni=1, we apply one of the existing
state-of-the-art single image saliency detection algorithm to
obtain the intra-image saliency map for each image, which
is represented as {Siintra}Ni=1. The more accurate the intra-
image saliency map is, the better the final co-saliency map
achieves. Here, we choose the DSS method [8] due to its
superior performance for single image saliency detection.

3.2. Inter-image saliency map

In addition to the intra-image representation, the inter-image
constraints should be introduced into co-saliency detection.
In this paper, the inter-image correspondence is formulated
as the consistency constraint, which includes the object-level
consistency metric and superpixel-level consistency metric.
The object-level consistency score is computed to generate
some reliable salient proposals based on multi-feature match-
ing. The superpixel-level consistency score is calculated by
considering multiple constrains to generate the inter-image
saliency map.

3.2.1. Object-level consistency metric

The common objects typically should have similar appear-
ances, such as shape, color and texture. Under the circum-
stances, we can utilize multi-feature matching metrics to mea-
sure the object-level similarity and discover some positive,
common and salient proposals from the intra-image saliency
maps. Through the threshold segmentation and region filter-
ing, some objects are determined as O = {oij}

Mi
j=1, where

Mi is the number of objects in an image. In order to eval-
uate the object similarity, three types of visual features, i.e.,
shape, color and texture, are used to describe the appearance
properties.

Shape similarity. The canny edge detection algorithm is
utilized to obtain object boundaries from the binary saliency
masks. Then, Shape Context method [16] is introduced to
measure the shape similarity among multiple objects. For



each object, Shape Context method first samples the con-
tour with roughly uniform spacing and obtains hundreds of
points as representative of its shape. Then, the shape context
of each point is constructed by the histogram of the relative
coordinates of the remaining points. The cost for matching
points is computed by the chi-square distance test. Regular-
ized thin-plate splines provide the transformation maps for
aligning the shapes. Finally, a sum of the matching errors be-
tween corresponding points and the magnitude of the aligning
transform is introduced to evaluate the dissimilarity between
two shapes. The shape similarity smn between two objects is
computed as:

smn = exp (−C
mn +Amn

σ2
s

), (1)

wherem,n = {1, 2, ...,M},M =
∑N
i=1Mi is the total num-

ber of objects. Further, Cmn is the shape context matching
cost, and Amn is the affine transformation cost. Besides, σs
is a non-negative parameter controlling the transition band-
width. More details can be found in [16].

Color similarity. To evaluate the color similarity be-
tween two objects, we extract two types of color features for
each object, e.g., the average color value in three color spaces
(i.e. RGB, CIELAB, and HSV), and the color histogram in
RGB and HSV color spaces. The color similarity between
two objects is defined as:

cmn = exp (−
|| µm − µn ||2 +

K∑
k=1

[hm(k)−hn(k)]2

hm(k)+hn(k)

σ2
c

), (2)

where || · ||2 denotes the `2-norm, µm and µn are the mth

and nth object’s normalized average color value, respectively.
h(k) is the normalized histogram valve, K is the number of
histogram bins and K = 512 in our experiments.

Texture similarity. The Gabor filter responses with 8 ori-
entations and three scales are exploited to represent the tex-
ture attribute of one object. The magnitude vector of Gabor
filter for each object is computed by combing the 24 filters
output. Then the texture similarity is generated as:

tmn = exp (−|| tm − tn ||2
σ2
t

), (3)

where tm and tn are the mth and nth object’s normalized
Gabor filter magnitude map, respectively. We notice that the
parameters σc and σt play a similar role as in (1). In our
experiments, we set σ2

s = σ2
c = σ2

t = 0.1.
Finally, three types of feature similarity are combined to

evaluate the consistency relationship between each pair of ob-
jects. The object-level similarity is defined as:

φmn = αs · smn + αc · cmn + αt · tmn, (4)

where αs, αc, αt are coefficients for shape, color and tex-
ture similarity, respectively. In our experiments, αs = 1/3,

αc = 1/3, and αt = 1/3 can perform reasonably well. The
larger φmn is, the higher the similarity between two objects
achieves. The final similarity value for each object is defined
as Φ(om) = arg max(φmn) , where n 6= m. All objects with
Φ(om) greater than a threshold T1 are regarded as positive
common salient objects and denoted as Op.

3.2.2. Superpixel-level consistency metric

In this subsection, superpixel-level consistency scores for all
images are computed based on the obtained positive salient
objects. First, the superpixels Ri = {rid}

Di

d=1 for each RGB
image Ii are extracted by using SLIC algorithm [17], where
Di is the number of superpixels in image Ii. The set of su-
perpixels {rup}Uu=1 inside of the positive objects Op is de-
noted as Rp, where U is the total number of superpixels in
Rp. Meanwhile, the set of superpixels outside of Op is de-
noted as Rc. Here, one superpixel is inside of one object
if Area(rd

⋂
om)/TotalArea(rd) > 0.2, where Area(z) is

the number of pixels inside of z. In this paper, the similarity
between each pair of superpixels is calculated based on color
and texture features by using the same computation process
as the object-level’s. Two superpixels are similar if their sim-
ilarity is greater than a threshold T2.

Initial consistency score. The initial consistency score
for each superpixel rid is calculated according to the similarity
among the rup in Rp. We first define the initial consistency
score for rup in Rp. Specifically, for each superpixel rup , the
more the number of its similar superpixels in Rp, the higher
its consistency score is. It is formulated as:

S̄(rup ) =
2

1 + exp(−n(u)U ·δs )
− 1, (5)

where n(u) is the number of similar superpixels in Rp with
rup , and δs is a parameter to control the consistency score. In
our experiments, we set δs = 0.05.

For each superpixel {rvc}Vv=1 in Rc, its most similar su-
perpixel rûp inRp is searched based on the similarity measure,
where V is the total number of superpixels in Rc. Then based
on intra-image saliency value and the distance constrain, the
consistency score for each superpixel rvc is calculated by:

S̄(rvc ) = 0.3 · exp(− d̄(v)

10
) · φûv · S̄(rûp ) · S̄intra(rvc ), (6)

where φûv is the similarity between rvc and rûp , d̄(v) is the
minimum Euclidean distance between the centroid of super-
pixel rvc and the boundary points of objects which located in
the same image, S̄intra(rvc ) is the mean intra-image saliency
value of pixels inside of rvc .

Refined consistency score. The intra-image saliency
maps generated by DSS method often exist some misses
due to the lack of consistency constrain, especially when the
salient objects connect with the border of image. In order to



Algorithm 1: Object Growing Algorithm
Input: O, T2, Rc.
for m from 1 to M do

while om has no change do
Search the outmost superpixels {rqm}Qm

q=1 of om;
for q from 1 to Qm do

Search rqm’s nearest neighbour superpixels
{rb}Bb=1 and compute the similarity φqb;

if (φqb > T2)&&(rb ∈ Rc) then
Sr(rb) = S̄(rqm);
om=om + rb;

end
end

end
end
Output: Merged superpixel set Rr and the refined

consistency score Sr(rb).

improve the detection performance, an object growing algo-
rithm is designed for consistency score refinement of Rc, as
shown in Algorithm 1. Similar to region growing algorithm,
if a superpixel rvc in Rc is similar with the nearest neighbour
superpixel which is inside of an object, the consistency score
of rvc will be changed and the rvc is merged into the object.
The merged superpixels set after this process is denoted as
Rr and their consistency scores are Sr.

For the superpixels in Rp, we define their consistency
score is equal to 1 since they are reliable. Finally, the con-
sistency score of each superpixel is regarded as its saliency
value and the inter-image saliency map for each image is gen-
erated as:

Siinter(r
i
d) =


1, if rid ∈ Rp;
Sr(r

i
d), if rid ∈ Rr;

S̄(rid), others .
(7)

3.3. Co-saliency map

The intra-image saliency map and inter-image saliency map
for each image are fused by using a weighted way to obtain
the final co-saliency maps:

Si
co(rid) =

{
Si
inter(rid), if rid ∈ Rr;

λ1 · Si
intra(rid) + λ2 · Si

inter(rid), otherwise,
(8)

where λ1 and λ2 is the weighted coefficient. In our experi-
ments, simply adopting λ1 = λ2 = 0.5 works well.

4. EXPERIMENTS

We evaluate the performance of our method, and compare it
with the state-of-the-art methods on two public datasets: the
iCoseg dataset and the MSRC dataset. The former contains
38 image sets of totally 643 images with manually labeled

ground truth. The latter contains 7 image sets of totally 240
images with manually labeled ground truth.

4.1. Parameter settings and evaluation metrics

We first introduce the parameter settings in our experiments.
The number of superpixels for each image is 300, i.e. Di =
300. We set the thresholds T1 = 0.8 and T2 = 0.7.

To evaluate the performance of our method, an object
comparison is performed based on generated co-saliency map
and the ground truth mask. Four evaluation metrics including
Precision-Recall (PR) curve, F-measure (F), AUC, and Mean
Absolute Error (MAE) are calculated. The precision and re-
call scores are produced by thresholding the saliency map into
binary salient object masks with a series of fixed integers from
0 to 255. AUC is the under area of ROC curve, and the larger,
the better.

4.2. Comparison with state-of-the-art methods

We compare our result with three single image saliency de-
tection methods (i.e. BSCA [18], SMD [19], and DSS [8])
and four co-saliency detection methods (i.e. DW [9], MSPL
[11], CCS [5], and IPDM [7]).

The quantitative comparison results in terms of the PR
curves, F-measure, AUC scores, and MAE scores are reported
in Fig.2. As can be seen, the proposed method reaches the
highest level in all curves on two datasets. Moreover, the pro-
posed method achieves the best performance on two datasets
with the highest F-measure and AUC scores and the small-
est MAE value compared with other methods. For the F-
measure, the performance gain of the proposed method over
the best competing approach MSPL [11] reaches 17.13% on
the MSRC dataset. The percentage gain of MAE score also
achieves 35.38%. On the iCoseg dataset, the minimum per-
centage gains of F-measure and MAE score of the proposed
method achieve 15.65% and 54.72%, respectively. Although
the DSS method also has approximate F-measure score com-
pared with the proposed method, its PR curve, AUC and MAE
are much inferior to ours. In addition, when the test im-
age dataset contains several unrelated images, its performance
will decline sharply.

Some visual comparisons of different methods on two
datasets are illustrated in Fig.3 and Fig.4. Obviously, the
existing co-saliency detection methods generate many false
alarms and misses, while our method obtains more accurate
and homogeneous results. Take Fig.3 as an example, single
image saliency detection methods tend to capture the salient
objects which located in the center of image. Thus their re-
sults are often incomplete when applied to co-saliency de-
tection due to the lack of consistency constrain. Compared
with the existing co-saliency detection methods, the proposed
method highlights the common salient object more. The
proposed object growing algorithm refines the intra-image
saliency results and obtains more complete salient objects.
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Fig. 2: The quantitative performances of different methods on two datasets. (a)-(c) are PR curves, F-measure and AUC scores,
and MAE on the MSRC dataset, respectively. (d)-(f) are PR curves, F-measure and AUC scores, and MAE on the iCoseg
dataset, respectively.

5. CONCLUSION

In this paper, we present a co-saliency detection method based
on hierarchical consistency measure by exploring the multi-
feature similarity and inter-image constrains among multiple
images. Since the co-salient objects often have similar ap-
pearance, the shape attribute is introduced to constrain the
object-level similarity and evaluate the consistency among
different objects. In addition, an object growing algorithm
is designed to refine the superpixel-level consistency mea-
sure and generate the inter saliency map. Experiment results
on two public datasets have demonstrated that the proposed
method outperforms other state-of-the-art methods.
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