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Abstract. In this paper, we propose a superpixel segmentation method
which utilizes extracted deep features along with the combination of color
and position information of the pixels. It is observed that the results can
be improved significantly using better initial seed points. Therefore, we
incorporated a one-step k-means clustering to calculate the positions of
the initial seed points and applied the active search method to ensure
that each pixel belongs to the right seed. The proposed method was also
compared to other state-of-the-art methods quantitatively and qualita-
tively, and was found to produce promising results that adhere to the
object boundaries better than others.
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1 Introduction

Superpixels are becoming increasingly important in the field of computer vision.
They are widely used in applications such as object detection [9], semantic seg-
mentation [2], saliency estimation [3], and optical flow estimation [7]. Essentially,
superpixel is a technique used to group image pixels into smaller sub-regions [1]
based on the pixels similarity. State-of-the-art overview can be found in [8].
Superpixels can be used as the fundamental units instead of pixels to reduce
computational complexity. Useful superpixels must produce high quality seg-
mentations that adhere to the edges well. To fulfill this demand, researchers
have tried many features. For instance, recently, the 5-D features consisting of
the L, a, b values from CIELAB color space and the x, y pixel coordinate has
been popular choice. However, relying only on appearance and spatial informa-
tion is not enough to segment the edges accurately when the objects in the image
share similar color with the background, which is very common when the scene
is highly cluttered.
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Fig. 1. Images segmented using our algorithm into 100, 200 and 400 superpixels. The
superpixels are compact and adhere well to the region boundaries.

Therefore, researchers have recently resorted to the convolutional neural net-
work (CNN) to extract features with more representability [5]. Due to the strong
capability of CNN to learn the high-level representations for natural images,
these methods often achieve better adherence to boundaries (Fig. 1).

It is important to note that superpixels are usually used as a preprocessing
step in other applications. Therefore, running speed is a critical factor affecting
the usefulness of superpixel algorithm. In this paper, we propose a superpixel
segmentation algorithm that can produce superpixels with better boundaries
adherence while being time efficient. There are two stages in our algorithm. In
the first stage, we modified the initialization step in [10] by first measuring the
distance between the seeds center and neighboring pixels. This makes each seed
to contain almost similar pixels and also makes the active search less computa-
tional since most of the pixels are similar. Then we applied the active search to
the initial superpixels to ensure that each pixel belongs to the right superpixel.
The initial superpixels and modified active search approach have low computa-
tional cost and satisfy all the properties of good superpixels.

2 Proposed Method

In the proposed method, deep features were extracted from pre-trained network
designed by [4] and concatenated with LabXY for better representation of the
image pixels. Superpixel Sampling Network (SNN) is mainly designed for feature
extraction, and we extracted features for each image with a deep CNN originally
trained over the BSDS500. Figure 2 shows an overview of the proposed method.
Multidimensional vector is used to represent each pixel in our algorithm: Ii =
[li ai bi xi yi Fi]T , where [li ai bi] is the pixel color vector in CIELAB color
space, Fi = [fi1 fi2...fiT ] are the extracted features from deep network and
[xi yi] is the pixel position.

Details on getting the initial superpixels are explained in Algorithm1. The
nearest seed center is computed by a distance function D defined by the following
equation,

D(Ii, Sk) =
√

λ (dc + αds)
2 + d2F , (1)

where Ii represents the pixel, Sk represents the seed center, λ is the weight for
controlling LabXY and α = m

N ; m is the compactness variable and N is the
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Fig. 2. Deep-FLIC flow chart. We used pre-trained network for extraction of features
in each image, then we concatenated these features and the original image features
in CIELAB color space. Finally we generated the initial superpixels and applied the
active search method used in [10] to get the final superpixels segmentation.

number of pixels in an image. The variables dc, ds and dF are the lab color
distance, xy plane distance, and deep feature distance, respectively. They are
defined by the following equations.

dc =
√

(li − lj)
2 + (ai − aj)

2 + (bi − bj)
2
, (2)

ds =
√

(xi − xj)
2 + (yi − yj)

2
, (3)

dF =
√

(Fi − Fj)
2 =

√√√√ T∑
t=1

(fit − fjt)
2
. (4)

2.1 Active Search

The active search strategy enables each of the current pixel to actively search for
the superpixel it should belong to, based on it’s neighbouring pixels. We com-
puted the distances between the current pixel and the seeds of its four adjacent
pixels. The assignment principle for pixel Ii is given by the equation below,

Li = arg min
Lj

D(Ii, SLj
), Ij ∈ Ai, (5)

where Ai consists of Ii and its four neighboring pixels, SLj
is Ij ’s corresponding

initial superpixel seed. Equation (1) was used to measure the distance D(Ii, SLj
).

The back and forth strategy [10] is applied to traverse the initial superpixels
and get the pixels processing sequence. Minimum bounding box for all the initial
superpixels is defined. The scanning process for all pixels in the corresponding
minimum bounding box is performed, and then the pixels are processed within
the initial superpixels. When the label of the current pixel Li changes to any
seed of its neighbouring pixels Lj , the seeds are updated instantly using the
following equations,

SLi
=

SLi
∗ |PLi

| − Ii
|PLi

| − 1
, (6)
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Algorithm 1. Superpixel Initialization
Input: Ii = [li, ai, bi, xi, yi, Fi] for each pixel.
Initialization: The initial seed points S = [S1, · · · , Sk] and the centers in each
of the seeds Sk = [lk ak bk xk yk Fk]T with the corresponding feature FSk ;
Set label Li = −1, distance di = ∞ for each pixel and itr = 0;
for each seed center Sk do

for each pixel in a 2S × 2S region around Sk do
Compute the distance D between Sk and Ii;
if D < di then

set di = D and Li = k
end

end

end
Output: Initial superpixels.

where |PLi
| is the number of pixels in the initial superpixel PLi

, and SLj
is

updated using the below equation,

SLj
=

SLj
∗ ∣∣PLj

∣∣ + Ii

|PLi
| + 1

, (7)

the bounding box is also updated. This process changes the seeds of the initial
superpixels adaptively and allows the assignment and update to happen jointly.

3 Experiments

The proposed algorithm is implemented in C++ and runs on a PC with CPU,
4.0 GHz, 8 GB RAM, and 64 bit operating system. Our method is compared
with existing four state-of-the-art algorithms, namely, FLIC [10], SLIC [1], LSC
[6] and SSN [4]. Publically available implementations provided by the original
authors are used for fair comparison. All the experiments are conducted on the
BSD Berkeley Segmentation Dataset. This dataset consists of five hundred 321×
481 images, together with human-annotated ground truth segmentations. The
effectiveness of our method is demonstrated by providing visual and quantitative
results with the existing superpixel methods. We experimented with the following
default parameters: The number of superpixel, K, was set as desired, the spatial
distance weight, m = 5 (as default), number of iterations, itr = 2, and λ = 0.5
(λ is a weighting value that balances the LabXY features and deep features. Its
value varies between [0; 1]).

3.1 Visual Results

Figure 3 shows segmentation results of our method and the compared existing
algorithms. Looking closely at the characteristics of good superpixel algorithm,
it can be seen that, our method performed well compared to the competing
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(a) FLIC [10] (b) LSC [6] (c) SLIC [1] (d) SSN [4] (e) Our result

Fig. 3. Visual comparison with SOTA algorithms with 100 and 300 superpixels.

(a) FLIC [10] (b) LSC [6] (c) SLIC [1] (d) SSN [4] (e) Our result

Fig. 4. Superpixels segmentation results and magnified regions. The number of super-
pixels in all the results is 100.

state-of-the-art algorithms. Furthermore, in Fig. 4 more visual results with mag-
nified regions can be seen, thereby indicating that our method obtained a cer-
tain improvement in boundary adherence compared to FLIC, LSC and SLIC
methods.

3.2 Quantitative Results

The most important feature of good superpixel algorithm is the boundary adher-
ence. To determine how well the superpixels adhere to the boundaries of an
object, it is required to use some criteria for quantitative comparison. Bound-
ary recall (BR) and under-segmentation error (UE) are the standard criteria for
measuring the quality of the boundary adherence. Figure 5(a) shows a graph of
the boundary recall as a function of the number of superpixels generated by the
algorithms. Our method performs favorably in both higher and lower superpixel
numbers. Under-segmentation error and Achievable segmentation accuracy of all
the methods are illustrated in Table 1. Looking at Table 1, its clearly seen that
SSN has the best UE of all the comparison algorithms. However our method is
the best compared to FLIC, LSC and SLIC.
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(a) (b)

Fig. 5. Quantitative comparison with the state-of-the-art methods. (a) Boundary recall
vs superpixel number. (b) Time comparison in different iterations.

Table 1. Comparison for 1000 superpixels (BR, UE) and 300 superpixels (ASA).

Existing methods FLIC [10] LSC [6] SLIC [1] SSN [4] OURS

Boundary Recall (BR) 0.890 0.897 0.834 0.892 0.900

Under-segmentation Error (UE) 0.181 0.252 0.200 0.108 0.154

Achievable Segmentation Accuracy (ASA) 0.949 0.923 0.925 0.947 0.948

4 Discussion

Good superpixel segmentation method should have high BR as well as low UE.
It is seen from Table 1 that the method developed in this study performs well
compared to several algorithms. In comparison to FLIC, LSC, and SLIC, our
method has lower UE. This advantage is due to the addition of more features in to
the distance measure. The BR measure of our method (Table 1) and Fig. 4 further
indicate the favorable performance of our algorithm compared to other methods
especially when the number of superpixels is high. However, SSN has the best BR
below 600 supepixels. The initial superpixels introduced in our method increased
the efficiency of the running time by making the active search less computational.
It ensures that each of the initial superpixel contained almost similar pixels. In
Fig. 5(b) we compared the time required for our method to generate superpixels
for different iterations with different number of superpixels. When processing
an image with 600 superpixels the time taken for first and second iterations
are 0.0852 s and 0.125 s, respectively, which can be used efficiently in image
preprocessing.

5 Conclusions

In this research, we proposed a modified superpixel algorithm, that takes into
account images with weak object boundaries to increase the boundary adherence
of the superpixels. FLIC algorithm is extended to incorporate deep features along
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with color and spatial properties of the pixels. Visual and quantitative results
show that the developed method is able to generate more semantically-coherent
superpixels compared to the other state-of-the-art methods. Future work will
involve the use of end to end trainable deep network with the active search
method to improve both the lower and higher superpixels and also reduce the
computational time.
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